首页 | 本学科首页   官方微博 | 高级检索  
     


Three-dimensional optical data storage in a fluorescent dye-doped photopolymer
Authors:Wang M M  Esener S C
Affiliation:Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, California 92093, USA. mmwang@ucsd.edu
Abstract:We propose a new, to our knowledge, monolithic multilayer optical storage medium in which data may be stored through the diffusional redistribution of fluorescent molecules within a polymer host. The active portion of the medium consists of a photopolymer doped with a fluorescent dye that is polymerized at the focal point of a high-numerical-aperture lens. We believe that as fluorescent molecules bond to the polymer matrix they become more highly concentrated in the polymerized regions, resulting in the modulated data pattern. Since data readout is based on detection of fluorescence rather than index modulation as in other photopolymer-based memories, the problems of media shrinkage and optical scatter are of less concern. An intensity threshold observed in the recording response of this material due to the presence of inhibitor molecules in the photopolymer allows for the three-dimensional confinement of recorded bits and therefore multilayer recording. The nonlinear recording characteristics of this material were investigated through a simple model of photopolymerization and diffusion and verified experimentally. Both single-layer and multilayer recordings were demonstrated.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号