首页 | 本学科首页   官方微博 | 高级检索  
     


Influence of alloying elements on the strain rate and temperature dependence of the flow stress of steels
Authors:V. Schulze  O. Vohringer
Affiliation:(1) Institut fur Werkstoffkunde I, Universitat Karlsruhe (TH), D-76128 Karlsruhe, Germany
Abstract:After a short introduction to the theoretical background of thermally activated glide of dislocations, a constitutive model is presented, which describes the temperature and strain-rate dependence of the flow stress. The properties of this constitutive equation were estimated for several plain carbon steels in normalized conditions, for quenched and tempered low-alloy steels, as well as for some high-strength low-alloy (HSLA) steels based on the temperature dependence and strain-rate sensitivity of the flow stress at temperatures 81 K≤T≤398 K and strain rates 5·10−5 s−1≤ε≤1·10−2s−1. The constitutive equation enables the extrapolation of flow-stress data to higher strain rates (ε<~10 +4s−1), which are in good agreement with the results obtained from high strain-rate deformation tests. The influence of solute-alloying elements on the thermal stress, the activation enthalpy, and the constitutive parameters will be discussed. This article is based on a presentation given in the symposium entitled ‘Dynamic Behavior of Materials-Part II,” held during the 1998 Fall TMS/ASM ASM Meeting and Materials Week, October 11–15, 1998, in Rosemont, Illinois, under the auspices of the TMS Mechanical Metallurgy and the ASM Flow and Fracture Committees.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号