首页 | 本学科首页   官方微博 | 高级检索  
     


Real-time photodisplacement microscope for high-sensitivity simultaneous surface and subsurface inspection
Authors:Nakata Toshihiko  Yoshimura Kazushi  Ninomiya Takanori
Affiliation:Production Engineering Research Laboratory, Hitachi Ltd., Yokohama, Japan. nakata@perl.hitachi.co.jp
Abstract:We have developed a new photodisplacement microscope system for practical use that achieves high-sensitivity simultaneous real-time imaging of surface and subsurface structures from a single space-frequency multiplexed interferogram. In this system a linear region of photothermal displacement is excited on the sample surface for subsurface imaging by a line-focused intensity-modulated laser beam. Surface information such as reflectivity and topography along with the displacement is detected with a charge-coupled device sensor-based parallel heterodyne interferometer. Surface and subsurface information components are space-frequency multiplexed into the sensor signal as orthogonal functions based on a frequency-optimized undersampling scheme, allowing each to be discretely reproduced by using a real-time Fourier analysis technique. Preliminary experiments demonstrate that this system is effective, simultaneously imaging reflectivity, topography, and photodisplacement for the detection of subsurface lattice defects in silicon, at a remarkable speed of only 0.26 s/256x256 pixel area. This new microscope is promising for nondestructive hybrid surface and subsurface inspection and other applications.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号