首页 | 本学科首页   官方微博 | 高级检索  
     

烧结矿化学成分控制专家系统的开发与应用
引用本文:范晓慧,龙红明,陈许玲,姜涛,石军. 烧结矿化学成分控制专家系统的开发与应用[J]. 钢铁, 2006, 41(11): 6-9
作者姓名:范晓慧  龙红明  陈许玲  姜涛  石军
作者单位:中南大学资源加工与生物工程学院,湖南,长沙,410083;攀枝花新钢钒股份有限公司炼铁厂,四川,攀枝花,617022
基金项目:国家自然科学基金委员会和上海宝钢集团公司联合资助项目 , 中南大学校科研和教改项目
摘    要:采用基于改进BP算法的人工神经网络模型,提前预报了烧结矿的R和TFe、SiO2含量,将模型的预报结果转化为规则的输入,设计了基于经验规则的专家系统,结合R、TFe的变化趋势和配料计算提前调整原料的配比.系统正式投入运行后,烧结矿碱度(R)预报命中率达到91%,全铁(TFe)预报命中率达到94%,操作指导建议采纳率为92%,实现了对烧结矿化学成分的稳定控制.

关 键 词:烧结矿化学成分  神经网络  BP模型  专家系统
文章编号:0449-749X(2006)11-0006-04
修稿时间:2006-01-16

Development and Application of Expert System for Controlling of Sinter Chemical Composition
FAN Xiao-hui,LONG Hong-ming,CHEN Xu-ling,JIANG Tao,SHI Jun. Development and Application of Expert System for Controlling of Sinter Chemical Composition[J]. Iron & Steel, 2006, 41(11): 6-9
Authors:FAN Xiao-hui  LONG Hong-ming  CHEN Xu-ling  JIANG Tao  SHI Jun
Affiliation:1. School of Resources Processing and Bioengineering,Central South University, Changsha 410083, Hunan, China; 2. Steelmaking Factory, Panzhihua New Steel and Vanadium Co. , Ltd. , Panzhihua 617022, Sichuan, China
Abstract:An artificial neural network model based on modified BP algorithm is used to predict R, TFe and SiO2 contents of sinter. The results of predictive model are transformed to input of rules. An expert system based on empirical rules was designed. Combining the change trend of R, TFe with burden calculation, the burden is adjusted with such system. The hit-rate of sinter basicity was 91%, that of TFe was 94%, and the acceptance rate of operation suggestions was 92%, realizing the goal of controlling sinter chemical composition steadily.
Keywords:sinter chemical composition   neural network   BP model   expert system
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号