首页 | 本学科首页   官方微博 | 高级检索  
     

基于图像处理和神经网络的光环境优化控制研究
引用本文:叶德堃,段中兴,于甜甜,李昊伦. 基于图像处理和神经网络的光环境优化控制研究[J]. 计算机应用研究, 2013, 30(3): 953-956
作者姓名:叶德堃  段中兴  于甜甜  李昊伦
作者单位:西安建筑科技大学 信息与控制工程学院,西安,710055
基金项目:国家自然科学基金资助项目(51178373)
摘    要:为了精确定位人体目标区域, 以达到照明节能最优化, 提出了一种改进的Canny算子与数学形态学相结合的图像处理技术, 对室内图像进行边缘检测和噪声处理, 得到含有人体目标的二值化图像, 将得到的二值化人体背影模板的七个Hu不变矩作为LVQ神经网络的输入向量, 训练出能够准确识别出人体背影的网络; 再建立出室内图像特征与人体数量和坐标的匹配模型, 从而根据人体坐标和数量来实现对灯具的优化控制。仿真和实验结果表明, 改进的Canny算子与LVQ神经网络的结合对室内光环境的优化控制具有很好的应用价值。

关 键 词:Canny算子  数学形态学  矩量保持法  Hu不变矩  LVQ神经网络

Study of light environment optimization and control based onimage processing and neural network
YE De-kun,DUAN Zhong-xing,YU Tian-tian,LI Hao-lun. Study of light environment optimization and control based onimage processing and neural network[J]. Application Research of Computers, 2013, 30(3): 953-956
Authors:YE De-kun  DUAN Zhong-xing  YU Tian-tian  LI Hao-lun
Affiliation:School of Information & Control Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China
Abstract:In order to positioning the target area of human body to achieve the optimization of the lighting energy saving, this paper put forward an image processing technique combined the improved Canny operator and mathematical morphology, detected the edge of the indoor image and noise processing, and then to get the binary image containing human as target. It took seven Hu moment invariants of binary human figure template as the input vector of LVQ neural network, which were calculated to get, and trained network to identify the human figure accurately. After that, building the matching model of indoor image characteristics and the personnel quantity and coordinates was well designed to realize the optimization control to indoor lamps according to personnel quantity and coordinates. Simulation and experimental results show that with the combination of the improved Canny operator and LVQ neural network has quite application value on the optimization control of indoor light environment.
Keywords:Canny operator   mathematical morphology   method of moment keeping   Hu moment invariants   LVQ neural network
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号