首页 | 本学科首页   官方微博 | 高级检索  
     

贝叶斯网络在过滤垃圾邮件算法中的应用研究
引用本文:崔超,杨威,张宪忠,张志军. 贝叶斯网络在过滤垃圾邮件算法中的应用研究[J]. 哈尔滨工业大学学报, 2011, 43(11): 145-148
作者姓名:崔超  杨威  张宪忠  张志军
作者单位:齐齐哈尔大学应用技术学院;齐哈尔市信息中心;齐齐哈尔大学应用技术学院;齐齐哈尔市信息技术研究所
摘    要:为在用户数据流中删除垃圾邮件,研究了具有自我学习能力的自适应邮件过滤系统.在对正常和垃圾2类邮件误分类成本分析的基础上,利用概率性的学习方法创建满足过滤任务需要的过滤器,且讨论使用邮件域名特征变量进行特定邮件过滤并设计了过滤器,最后对实际邮件组进行操作,验证了算法的可靠性.

关 键 词:贝叶斯理论方法  概率  特征变量  邮件过滤

Bayesian application study on arithmetic for filtering junk e-mail
CUI Chao,YANG Wei,ZHANG Xian-zhong and ZHANG Zhi-jun. Bayesian application study on arithmetic for filtering junk e-mail[J]. Journal of Harbin Institute of Technology, 2011, 43(11): 145-148
Authors:CUI Chao  YANG Wei  ZHANG Xian-zhong  ZHANG Zhi-jun
Affiliation:College of Applied Technology,Qiqihar University,161006 Qiqihar,China;Qiqihar Information Center,161006 Qiqihar,China;College of Applied Technology,Qiqihar University,161006 Qiqihar,China;Qiqihar information Technology Institute,161006 Qiqihar,China)
Abstract:To delete spams from User data stream,an adaptive self-learning spam filtering system has been studied and presented.On the basis of cost analysis mistakenly classified of normal and spam e-mail,a filter to meet the requirements of filtering tasks with learning methods of probabilistic is created,and the use of mail domain name characteristic variables for a particular e-mail filtering is studied.Finally,experiments verify the reliability of the algorithm.
Keywords:bayesian theory  probability  feature-variable  filtering e-mail
本文献已被 CNKI 等数据库收录!
点击此处可从《哈尔滨工业大学学报》浏览原始摘要信息
点击此处可从《哈尔滨工业大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号