首页 | 本学科首页   官方微博 | 高级检索  
     

语音/音乐自动分类中的特征分析
引用本文:卢坚,陈毅松,孙正兴,张福炎. 语音/音乐自动分类中的特征分析[J]. 计算机辅助设计与图形学学报, 2002, 14(3): 233-237
作者姓名:卢坚  陈毅松  孙正兴  张福炎
作者单位:南京大学软件新技术国家重点实验室,南京,210093,南京大学计算机科学与技术系,南京,210093
基金项目:国家自然科学基金 (6990 3 0 0 6)资助
摘    要:综合分析了语音和音乐的区别性特征,包括音调,亮度,谐度等感觉特征与MFCC(Mel-Frequency Cepstral Coefficients)系数等,提出一种left-right DHMM(Discrete Hidden Markov Model)的分类器,以极大似然作为判别规则,用于语音,音乐以及它们的混合声音的分类,并且考察了上述特征集合在该分类器中的分类性能,实验结果表明,文中提出的音频特征有效,合理,分类性能较好。

关 键 词:特征分析 隐马尔可夫模型 语音 音乐 自动分类 语音识别 音频信号
修稿时间:2001-02-13

Feature Analysis for Speech/Music Automatic Classification
Lu JianChen YisongSun ZhengxingZhang Fuyan. Feature Analysis for Speech/Music Automatic Classification[J]. Journal of Computer-Aided Design & Computer Graphics, 2002, 14(3): 233-237
Authors:Lu JianChen YisongSun ZhengxingZhang Fuyan
Abstract:Discriminating features between speech and music are analyzed, including perceptual features like pitch, brightness and harmonicity, etc, and Mel Frequency Cepstral Coefficients (MFCC). Their performances are evaluated in a left right discrete HMM based audio classifier, which is used to classify audio into speech, music, their mixed sound and such like three categories with maximum likelihood criterion. The experiment results show that the features selected are effective for speech/music classification, and the classification accuracy is excellent.
Keywords:feature analysis   content based audio classification   Hidden Markov Model(HMM)   Mel Frequency Cepstral Coefficients(MFCC)
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号