首页 | 本学科首页   官方微博 | 高级检索  
     

一种针对大型事务数据库的关联规则挖掘算法
引用本文:崔建,李强,王国师. 一种针对大型事务数据库的关联规则挖掘算法[J]. 空军雷达学院学报, 2011, 25(3): 205-208. DOI: 10.3969/j.issn.1673-8691.2011.03.015
作者姓名:崔建  李强  王国师
作者单位:1. 空军雷达学院研究生管理大队,武汉,430019
2. 空军雷达学院四系,武汉,430019
摘    要:为进一步解决对大型数据库进行关联规则挖掘时产生的CPU时间开销大和I/O操作频繁问题,给出一种改进的关联规则挖掘算法(ARMAC).该算法引入有向无环图和tidlist结构用以提高频繁项目集的计算效率,并将数据库划分为内存可以满足要求的若干部分,解决了对大型数据库挖掘时磁盘操作频繁的问题,从而有效地适用于大型数据库的关联规则挖掘.该算法吸取连续关联规则挖掘(CARMA)算法的优势,只需扫描两次数据库便可完成挖掘过程.实验结果表明:该算法在大型事务数据库中具有更高的执行效率.

关 键 词:数据挖掘  频繁项集  大型数据库  有向无环图  关联规则

Algorithm of Association Rule Mining for Large Transaction Databases
CUI Jian,LI Qiang,WANG Guo-shi. Algorithm of Association Rule Mining for Large Transaction Databases[J]. Journal of Air Force Radar Academy, 2011, 25(3): 205-208. DOI: 10.3969/j.issn.1673-8691.2011.03.015
Authors:CUI Jian  LI Qiang  WANG Guo-shi
Affiliation:CUI Jian1,LI Qiang2,WANG Guo-shi1(1.Department of Graduate Management,AFRA,Wuhan 430019,China,2.No.4 Department,China)
Abstract:To further reduce both the large overhead of CPU and frequent operation of I/O occurred in the process of the association rules mining on the large transaction database,this paper presents an improved algorithm of association rule mining(ARMAC).In this algorithm,a directed acyclic graph(DAG) and the tidlist configuration are taken to improve the computing efficiency of the frequent item sets,and the database is partitioned into several parts whose RAM can meet the corresponding demand,thus overcoming the pr...
Keywords:data mining  frequent item sets  large database  directed acyclic graph(DAG)  association rules  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号