首页 | 本学科首页   官方微博 | 高级检索  
     

一种改进的KNN文本分类算法
作者姓名:樊存佳  汪友生边航
作者单位:北京工业大学电子信息与控制工程学院
摘    要:当今大数据时代,文本数据占相当大的比重,作为有效管理和组织文本数据的方法,分类逐渐成为关注的热点。KNN是一种经典的分类算法,针对其分类速度和分类精度无法同时兼顾的不足,采用改进的K Medoids聚类算法裁剪对KNN分类贡献小的训练样本,从而减少KNN相似度的计算量,并定义代表度函数有差别地处理测试文本的K个最近邻文本,以提高KNN的分类精度。实验结果表明,改进后的方法在分类速度上和分类精度上均有明显地提高。

关 键 词:文本分类  KNN  裁剪训练样本  代表度函数
点击此处可从《国外电子测量技术》浏览原始摘要信息
点击此处可从《国外电子测量技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号