首页 | 本学科首页   官方微博 | 高级检索  
     


Improved Substrate Protection and Self-Healing of Boundary Lubrication Film Consisting of Polydimethylsiloxane with Cationic Side Groups
Authors:Erik Hsiao  Laura C Bradley  Seong H Kim
Affiliation:(1) Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA;
Abstract:The substrate protection and self-healing capability of a cationic polymer lubricant (CPL) on a silicon oxide surface were tested with a pin-on-disc tribometer and atomic force microscopy (AFM). CPL was made of low molecular weight polydimethylsiloxane (PDMS) containing covalently attached quaternary ammonium cations and iodide counter-anions. CPL was spin-coated on the silicon oxide surface to form a 3–4 nm thick bound-and-mobile lubricant layer. The CPL film capable of binding to the SiO2 surface through ionic interactions is superior in substrate protection than the neutral PDMS film which cannot form the bound layer. The mobile component in the CPL film readily flows into the lubricant-depleted sliding contact region from the surrounding film. The self-healing capability of CPL via lateral flow is slightly enhanced in humid environments due to water uptake in the film. The 3–4 nm thick CPL film on silicon oxide takes 30–40 s to flow into a ~50 μm wide track, which corresponds to an apparent spreading rate of 2–3 × 10−11 m2/s.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号