首页 | 本学科首页   官方微博 | 高级检索  
     


Wasserstoffinduzierte Spannungsrißkorrosion an unverzinkten und verzinkten Baustählen
Authors:Ernst Riecke  Brigitte Johnen
Abstract:Hydrogen induced stress corrosion cracking of non galvanized and galvanized construction steels The processes of atmospheric corrosion and corrosion in collected water which may lead to hydrogen induced stress corrosion cracking of high-strength reinforcing steels in casing tubes before injection with concrete are discussed. Hydrogen uptake during corrosion occurs in weakly acid solutions as well as in neutral or alkaline aqueous solutions. The hydrogen uptake by proton discharge in acid solutions decreases with increasing pH of the electrolyte. Hydrogen can also be absorbed in neutral to weakly alkaline solutions if steels are plastically deformed and water reacts with the fresh iron surface. In alkaline solutions, hydrogen uptake is possible if, at the generally passivated steel surface, localized corrosion (pitting or crevice corrosion), local galvanic cells and a sufficient decrease in the pH of the pit electrolyte occurs. In the case of galvanized steels with damaged zinc layers, hydrogen uptake may result from the cathodic polarization of the free steel surface by zinc dissolution. The absorbed hydrogen interacts with the microstructure of the steels and weakens the bonds between the iron atoms. The influence of the microstructure of high-strength steels on the fracture behaviour is discussed on the basic of the so-called decohesion theory.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号