首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
水电机组状态参数趋势分析与在线识别
作者姓名:
王善永
钟敦美
张启明
作者单位:
(国家电力公司电力自动化研究院, 南京 210003)
摘 要:
机组状态参数的趋势分析及计算机表达是影响在线故障诊断的重要因素。文中运用奇异谱理论对状态参数的趋势进行了分析,运用人工神经网络完成对机组状态参数典型趋势的在线识别。该方法可以对机组状态参数(如振动、温度、压力等)进行有效的识别,为水轮机组的状态分析、状态评估和预测提供有效的辅助分析手段,从而为水电厂状态维修提供了参考。
关 键 词:
水电厂; 状态检修; 奇异谱理论; 人工神经网络; 趋势分析; 在线识别
收稿时间:
1900-01-01
修稿时间:
1900-01-01
点击此处可从《水电自动化与大坝监测》浏览原始摘要信息
点击此处可从《水电自动化与大坝监测》下载全文
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号