首页 | 本学科首页   官方微博 | 高级检索  
     


Nitrogen inputs to rivers, estuaries and continental shelves and related nitrous oxide emissions in 1990 and 2050: a global model
Authors:Carolien Kroeze  Sybil P Seitzinger
Abstract:The purpose of the current paper is to estimate future trends (up to the year 2050) in the global geographical distribution of nitrous oxide (N2O) emissions in rivers, estuaries, and continental shelf regions due to biological processes, particularly as they are affected by anthropogenic nitrogen (N) inputs, and to compare these to 1990 emissions. The methodology used is from Seitzinger and Kroeze (1998) who estimated 1990 emissions assuming that N2O production in these systems is related to nitrification and denitrification. Nitrification and denitrification in rivers and estuaries were related to external inputs of nitrogen to those systems. The model results indicate that between 1990 and 2050 the dissolved inorganic nitrogen (DIN) export by rivers more than doubles to 47.2 Tg N in 2050. This increase results from a growing world population, associated with increases in fertilizer use and atmospheric deposition of nitrogen oxides (NOy). By 2050, 90% of river DIN export can be considered anthropogenic. N2O emissions from rivers, estuaries and continental shelves are calculated to amount to 4.9 (1.3 – 13.0) Tg N in 2050, of which two-thirds are from rivers. Aquatic emissions of N2O are calculated to increase faster than DIN export rates: between 1990 and 2050, estuarine and river emissions increase by a factor of 3 and 4, respectively. Emissions from continental shelves, on the other hand, are calculated to increase by only 12.5%.
Keywords:aquatic emissions  N2O  nitrogen transport  watersheds  nitrous oxide
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号