首页 | 本学科首页   官方微博 | 高级检索  
     


On the Galerkin/Finite-Element Method for the Serre Equations
Authors:Dimitrios Mitsotakis  Boaz Ilan  Denys Dutykh
Affiliation:1. School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA?, 95343, USA
2. School of Mathematical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
3. LAMA, UMR 5127 CNRS, Université de Savoie, Campus Scientifique, 73376?, Le Bourget-du-Lac Cedex, France
Abstract:A highly accurate numerical scheme is presented for the Serre system of partial differential equations, which models the propagation of dispersive shallow water waves in the fully-nonlinear regime. The fully-discrete scheme utilizes the Galerkin / finite-element method based on smooth periodic splines in space, and an explicit fourth-order Runge–Kutta method in time. Computations compared with exact solitary and cnoidal wave solutions show that the scheme achieves the optimal orders of accuracy in space and time. These computations also show that the stability of this scheme does not impose very restrictive conditions on the temporal stepsize. In addition, solitary, cnoidal, and dispersive shock waves are studied in detail using this numerical scheme for the Serre system and compared with the ‘classical’ Boussinesq system for small-amplitude shallow water waves. The results show that the interaction of solitary waves in the Serre system is more inelastic. The efficacy of the numerical scheme for modeling dispersive shocks is shown by comparison with asymptotic results. These results have application to the modeling of shallow water waves of intermediate or large amplitude.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号