首页 | 本学科首页   官方微博 | 高级检索  
     


CO2 capture of amino functionalized three-dimensional worm-hole mesostructured MSU-J silica
Authors:Jian Jiao  Panpan Lv  Lei Wang  Shaomin Dan  Lu Qi  Yonghong Cui
Affiliation:1. Department of Applied Chemistry, School of Science, Northwestern Polytechnical University, Xi’an, 710072, People’s Republic of China
Abstract:Tetraethylenepentamine (TEPA) was employed to functionalize the large-pore mesoporous silica (denoted MSU-J) with 3D worm-hole framework structures which was prepared through a supramolecular hydrogen-bonding assembly pathway from low-cost H2NCH(CH3)CH2OCH2CH(CH3)]33NH2 (D2000) as structure-directing porogens and tetraethylorthosilioate as the silica source for capturing CO2. The resultant adsorbents were characterized by FT-IR, Transmission electron microscopy (TEM), N2 adsorption/desorption and thermogravimetric analysis. Textural properties, elemental analysis and TEM measurement of the samples showed a severe pore filling of MSU-J as TEPA loading was increased to 70 wt%. CO2 adsorption isotherms measured at different temperatures revealed the optimal adsorption temperature is 25 °C. The adsorption capacity of MSU-J with different TEPA loading contents was calculated. As a result, 50 wt% of TEPA supported on as-synthesized MSU-J achieved the highest capacity with the value of 164.3 mg/g under the conditions of 99.99 % CO2 at 25 °C and 0.1 MPa. Repeated adsorption/desorption cycles revealed that amine-impregnated materials was very efficient for less apparent decrease in CO2 adsorption capacity even after 6 adsorption–regeneration cycles.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号