首页 | 本学科首页   官方微博 | 高级检索  
     


EcoSmart Fire as Structure Ignition Model in Wildland Urban Interface: Predictions and Validations
Authors:Mark A Dietenberger  Charles R Boardman
Affiliation:1.Forest Products Laboratory,USDA, FS,Madison,USA
Abstract:EcoSmartFire is a Windows program that models heat damage and piloted ignition of structures from radiant exposure to discrete landscaped tree fires. It calculates the radiant heat transfer from cylindrical shaped fires to the walls and roof of the structure while accounting for radiation shadowing, attenuation, and ground reflections. Tests of litter burn, a 0.6 m diameter fire up to 250 kW heat release under a Heat Release Rate (HRR) hood, with Schmidt-Boelter heat flux sensors in the mockup wall receiving up to 5 kW/m2 radiant flux, in conjunction with Fire Dynamic Simulator (FDS) modeling verified a 30% radiant fraction, but indicated the need for a new empirical model of flame extinction coefficient and radiation temperature as function of fire diameter and heat release rate for use in ecoSmartFire. The radiant fluxes predicted with both ecoSmartFire and FDS agreed with SB heat flux sensors to within a few percent errors during litter fire growth. Further experimental work done with propane flame heating (also with 30% radiant fraction) on vertical redwood boards instrumented with embedded thermocouples validated the predicted temperature response to within 20% error for both models. The final empirical correlation for flame extinction coefficient and temperature is valid for fire diameters between 0.2 and 7.9 m, with heat release rates up to 1000 kW. From the corrected radiant flux the program calculates surface temperatures for a given burn time (typically 30 s) and weather conditions (typically dry, windy, and warm for website application) for field applications of many trees and many structural surfaces. An example was provided for a simple house exposed to 4 burning trees selected on a Google enhanced mapping that showed ignition of a building redwood siding. These temperatures were compared to damage or ignition temperatures with output of the percentage of each cladding surface that is damaged or ignited, which a homeowner or a landscaper can use to optimize vegetation landscaping in conjunction with house exterior cladding selections. The need for such physics-based fire modeling of tree spacing was indicated in NFPA 1144 for home ignitability in wildland urban interface, whereas no other model is known to provide such capability.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号