首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical investigation of statistical variation of concrete damage properties between scales
Authors:Shixue Liang  Jiun-Shyan Chen  Jie Li  Shih-Po Lin  Sheng-Wei Chi  Michael Hillman  Michael Roth  William Heard
Affiliation:1.School of Civil Engineering and Architecture,Zhejiang Sci-Tech University,Hangzhou,People’s Republic of China;2.Department of Structural Engineering,University of California,San Diego,USA;3.School of Civil Engineering,Tongji University,Shanghai,People’s Republic of China;4.Research and Innovation Center,Ford Motor Company,Dearborn,USA;5.Department of Civil and Materials Engineering,University of Illinois at Chicago,Chicago,USA;6.Department of Civil and Environmental Engineering,The Pennsylvania State University,University Park,USA;7.U.S. Army Engineer Research and Development Center,Vicksburg,USA
Abstract:Concrete is typically treated as a homogeneous material at the continuum scale. However, the randomness in micro-structures has profound influence on its mechanical behavior. In this work, the relationship of the statistical variation of macro-scale concrete properties and micro-scale statistical variations is investigated. Micro-structures from CT scans are used to quantify the stochastic properties of a high strength concrete at the micro-scale. Crack propagation is then simulated in representative micro-structures subjected to tensile and shear tractions, and damage evolution functions in the homogenized continuum are extracted using a Helmholtz free energy correlation. A generalized density evolution equation is employed to represent the statistical variations in the concrete micro-structures as well as in the associated damage evolution functions of the continuum. This study quantifies how the statistical variations in void size and distribution in the concrete microstructure affect the statistical variation of material parameters representing tensile and shear damage evolutions at the continuum scale. The simulation results show (1) the random variation decreases from micro-scale to macro-scale, and (2) the coefficient of variation in shear damage is larger than that in the tensile damage.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号