首页 | 本学科首页   官方微博 | 高级检索  
     


Smoke Movement in a Sloping Subway Tunnel Under Longitudinal Ventilation with Blockage
Authors:Kai Zhu  Long Shi  Yongzheng Yao  Shaogang Zhang  Hui Yang  Ruifang Zhang  Xudong Cheng
Affiliation:1.State Key Laboratory of Fire Science,University of Science and Technology of China,Hefei,China;2.Civil and Infrastructure Engineering Discipline, School of Engineering,RMIT University,Melbourne,Australia
Abstract:Critical velocity and smoke back-layering length are two of the determining parameters to the fire risk assessment of subway tunnel. These two parameters of a sloping subway tunnel with train blockage were investigated both experimentally and numerically in this paper. To address the influences of slope, the slopes of 0, 3, 6, 9, 12, 15% in downhill subway tunnel were studied and the height (H) of the tunnel was replaced by the inclined tunnel height (\( H/\cos \theta \)). The train model with a dimension of 2 m (length) × 0.3 m (width) × 0.38 m (height) was also chosen in simulations and experiments for the tunnel blockage. Thenceforward, 30 reduced-scale experimental and 150 numerical scenarios were analyzed to predict the critical velocity and smoke back-layering length in various sloping subway tunnels. Six different heat release rates including 5.58, 11.17, 16.67, 22.35, 27.94, and 33.52 kW were considered in the experiments and five different heat release rates including 2.79, 5.58, 8.38, 11.17 and 16.67 kW were considered in the simulations. Based on the comparison in the horizontal tunnel, numerical results were quite consistent with the experiments. The results showed that train blockage influenced the smoke back-layering length, and the critical velocity increases with the tunnel slope. Finally, empirical models were developed to predict the critical velocity and smoke back-layering length in a sloping subway tunnel with train blockage.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号