首页 | 本学科首页   官方微博 | 高级检索  
     


Modelling biological gel contraction by cells: mechanocellular formulation and cell traction force quantification
Authors:I Ferrenq  L Tranqui  B Vailhé  PY Gumery  P Tracqui
Affiliation:Laboratoire TIMC-IMAG, UMR CNRS 5525, Faculté de Médecine, La Tronche, France.
Abstract:Traction forces developed by most cell types play a significant role in the spatial organisation of biological tissues. However, due to the complexity of cell-extracellular matrix interactions, these forces are quantitatively difficult to estimate without explicitly considering cell properties and extracellular mechanical matrix responses. Recent experimental devices elaborated for measuring cell traction on extracellular matrix use cell deposits on a piece of gel placed between one fixed and one moving holder. We formulate here a mathematical model describing the dynamic behaviour of the cell-gel medium in such devices. This model is based on a mechanical force balance quantification of the gel visco-elastic response to the traction forces exerted by the diffusing cells. Thus, we theoretically analyzed and simulated the displacement of the free moving boundary of the system under various conditions for cells and gel concentrations. This model is then used as the theoretical basis of an experimental device where endothelial cells are seeded on a rectangular biogel of fibrin cast between two floating holders, one fixed and the other linked to a force sensor. From a comparison of displacement of the gel moving boundary simulated by the model and the experimental data recorded from the moving holder displacement, the magnitude of the traction forces exerted by the endothelial cell on the fibrin gel was estimated for different experimental situations. Different analytical expressions for the cell traction term are proposed and the corresponding force quantifications are compared to the traction force measurements reported for various kind of cells with the use of similar or different experimental devices.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号