首页 | 本学科首页   官方微博 | 高级检索  
     


Electrical and thermal properties of low permittivity Sr2Al2SiO7 ceramic filled HDPE composites
Authors:KM Manu  S Ananthakumar  MT Sebastian
Affiliation:Materials Science and Technology Division, National Institute for Interdisciplinary Science and Technology (NIIST), CSIR, Thiruvananthapuram 695019, India
Abstract:The feasibility of low permittivity Sr2Al2SiO7 (SAS) ceramic filled high density polyethylene (HDPE) composites for substrate and packaging applications has been investigated in this paper. The composites were prepared by the melt mixing and hot pressing techniques. Scanning electron microscopic images of SAS filled HDPE showed the increased connectivity with filler loading. The composites showed excellent relative density (>98%) with low bulk density (<2.40 g cm?3) and very low moisture absorption (<0.10 wt%). The relative permittivity (εr) and the dielectric loss (tan δ) at 1 MHz and at 5 GHz were found to be low and found to increase with filler volume fraction (Vf). The experimentally observed relative permittivity at 5 GHz was correlated with the values proposed by different theoretical models. Among them, effective medium theory (EMT) gave better fit with experimental values except at the highest filler loading (0.50 Vf). Improvement in the thermal properties was also observed with filler content. The coefficient of linear thermal expansion (CTE) was found to decrease with filler content. Thermal conductivity (TC) of the composite was greatly enhanced as a function of filler volume fraction. The composite with 0.50 filler volume fraction showed balanced thermal and dielectric properties with εr=4.2, tan δ=3.9×10?3, TC=2.2 W m?1 K?1 and CTE=101 ppm/°C.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号