首页 | 本学科首页   官方微博 | 高级检索  
     


Reduced positive feedback regulation between myosin crossbridge and cardiac troponin C in fast skeletal myofibrils
Authors:S Morimoto  I Ohtsuki
Affiliation:Department of Pharmacology, Faculty of Medicine, Kyushu University, Fukuoka.
Abstract:Several studies have shown that substitution of cardiac troponin C into fast skeletal muscle causes a marked reduction in cooperativity of Ca(2+)-activation of both myofibrillar ATPase and tension development. To clarify the underlying mechanisms, in the present study, Ca2+ binding to cardiac troponin C inserted into fast skeletal myofibrils was measured. Two classes of binding sites with different affinities (classes 1 and 2) were clearly identified, which were equivalent stoichiometrically to the two high-affinity sites (sites III and IV) and a single low-affinity site (site II) of troponin C, respectively. Ca2+ binding to class-2 sites and Ca(2+)-activation of myofibrillar ATPase occurred in roughly the same Ca2+ concentration range, indicating that site II is responsible for Ca2+ -regulation. Myosin crossbridge interactions with actin, both in the presence and absence of ATP, enhanced the Ca2+ binding affinity of only class-2 sites. These effects of myosin crossbridges, however, were much smaller than the effects on the Ca2+ binding to the low-affinity sites of fast skeletal troponin C, which are responsible for regulating fast skeletal myofibrillar ATPase. These findings provide strong evidence that the reduction in the cooperative response to Ca2+ upon substituting cardiac troponin C into fast skeletal myofibrils is due to a decrease in the positive feedback interaction between myosin crossbridge attachment and Ca2+ binding to the regulatory site of troponin C.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号