首页 | 本学科首页   官方微博 | 高级检索  
     

电动汽车电机故障时间的粒子群优化灰色预测
引用本文:朱显辉,崔淑梅,师楠,闵远亮. 电动汽车电机故障时间的粒子群优化灰色预测[J]. 高电压技术, 2012, 38(6): 1391-1396
作者姓名:朱显辉  崔淑梅  师楠  闵远亮
作者单位:1. 哈尔滨工业大学电气工程及自动化学院,哈尔滨,150080
2. 哈尔滨工业大学电气工程及自动化学院,哈尔滨150080/黑龙江科技学院电气与信息工程学院,哈尔滨150027
基金项目:国家高技术研究发展计划(863计划)(SS2012AA111003)~~
摘    要:电动汽车电机故障因素多,可靠性分析需要大样本数据,为准确预测电机的故障时间,建立了故障率较高元件的故障树模型,给出了其可靠性计算式,并将基于小样本数据的灰色算法引入到电机可靠性计算中,利用传统和改进灰色模型进行仿真分析。为了进一步提高预测精度,以两种灰色模型为基础,利用粒子群算法的全局寻优能力,提出了以均方差最小为目标函数的优化模型,对电机故障时间进行预测,并利用两组实测数据进行了验证。结果表明,优化算法的相对平均误差分别为3.36%和5.05%,相对误差最大值分别为5.62%和8.41%。该结果验证了所提算法的有效性,为电动汽车电机的故障预测提供了理论依据。

关 键 词:电动汽车  电机  灰色模型  粒子群优化(PSO)  故障时间  故障树

Grey Prediction Model of Electric Vehicle Motor Based on Particle Swarm Optimization
ZHU Xianhui,CUI Shumei,SHI Nan,MIN Yuanliang. Grey Prediction Model of Electric Vehicle Motor Based on Particle Swarm Optimization[J]. High Voltage Engineering, 2012, 38(6): 1391-1396
Authors:ZHU Xianhui  CUI Shumei  SHI Nan  MIN Yuanliang
Affiliation:1(1.School of Electrical Engineering and Automation,Harbin Institute of Technology,Harbin 150080,China; 2.School of Electrical and Information Engineering,Heilongjiang Institute of Science and Technology,Harbin 150027,China)
Abstract:Due to various motor faults in electric vehicles,a large amount of data are usually required in reliability analysis.In order to accurately predict the malfunction time,we established a fault tree model of components with high failure rate,and proposed an analytic formula.Grey algorithm based on small sample data was introduced into the reliability calculation of motor,and the traditional model and improved model were simulated and analyzed.To further improve the prediction accuracy,particle swarm optimization(PSO) which has the abilities of seeking the global optimum was utilized to fit the two grey models aiming at least mean squared errors,and to predict the malfunction time.At last,the optimization modelwas validated by two sets of measured data.The analysis results reveal that,the average relative errors of optimization algorithm are 3.36% and 5.05%,repectively,and the maximum relative errors are 5.62% and 8.41%,repectively.The results verify the effectiveness of the proposed algorithm,which provides fundamental basis for faults prediction of motors used in electric vehicle.
Keywords:electric vehicle  motor  grey model  particle swarm optimization(PSO}  down time  failure tree
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号