首页 | 本学科首页   官方微博 | 高级检索  
     

基于支持向量机的属性优选和储层预测
引用本文:张长开,姜秀娣,朱振宇,印海燕,陆文凯. 基于支持向量机的属性优选和储层预测[J]. 石油地球物理勘探, 2012, 0(2): 282-285,183,184
作者姓名:张长开  姜秀娣  朱振宇  印海燕  陆文凯
作者单位:清华大学自动化系智能技术与系统国家重点实验室清华大学信息科学与技术国家实验室(筹);中海油研究总院
基金项目:国家科技重大专项(2008ZX05023-005-011);中国高技术研究发展计划(863)(2006AA09102-10)联合资助
摘    要:本文采用基于支持向量机(SVM)的特征选择方法进行地震属性优选,根据油井的产油气情况将油井分为高产井和低产井,利用SVM对这些样本进行训练,然后根据每个属性对应的权值进行筛选,便可以选取对油气敏感的属性,进而更好地预测储层。具体过程为:①提取一定量的地震属性;②根据已知井的信息,获得训练样本,训练线性SVM;③计算各个特征的权值;④选取较大权值绝对值对应的多个属性;⑤将支持向量回归机(SVR)应用于优选出的属性,获得储层预测的结果。实际资料应用结果表明,文中方法不仅能筛选出有效的地震属性,还能够有效地预测储层。

关 键 词:支持向量机  地震属性  属性优选  支持向量回归机  储层预测

Attributes selection and reservoir prediction based on support vector machine
Zhang Changkai,Jiang Xiudi,Zhu Zhenyu,Yin Haiyan,and Lu Wenkai. Attributes selection and reservoir prediction based on support vector machine[J]. Oil Geophysical Prospecting, 2012, 0(2): 282-285,183,184
Authors:Zhang Changkai  Jiang Xiudi  Zhu Zhenyu  Yin Haiyan  and Lu Wenkai
Affiliation:1.1.Department of Automation,State Key Laboratory of Intelligent Technology and Systems,Tsinghua National Laboratory for Information Science and Technology,Tsinghua University,Beijing 100084,China2.CNOOC Research Institute,Beijing 100027,China
Abstract:This paper applies feature selection algorithm based on SVM to select seismic attributes.According to the oil and gas yielding of oil wells,samples of seismic attributes are divided into two kinds:high-yielding well and low-yielding well.After these samples are trained by SVM,the attributes sensitive to oil and gas will be selected by screening the weight corresponding to each attribute,and then be taken advantage to predict reservoirs.The detailed process can be described as:①Extract certain seismic attributes;②Obtain samples according to the given information of some oil wells and train them by using SVM;③Calculate the weight of every attribute;④Choose out the attributes whose weight absolute value are respectively large;⑤Apply the support vector regression(SVR) to the chosen out attributes and predict reservoir.Our application of this algorithm on real seismic data shows that the algorithm is able to choose out valid seismic attributes and effectively predict reservoirs at the same time.
Keywords:support vector machine  seismic attributes  attribute selection  support vector regression(SVR)  reservoir prediction
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号