Super-Thermite (Al/Fe2O3) Fluorocarbon Nanocomposite with Stimulated Infrared Thermal Signature via Extended Primary Combustion Zones for Effective Countermeasures of Infrared Seekers |
| |
Authors: | Sherif Elbasuney Amir Elsaidy Mohamed Kassem Hesham Tantawy Ramy Sadek Ahmed Fahd Mohamed Gobara |
| |
Affiliation: | 1.Head of Nanotechnology Research Center,Military Technical College,Cairo,Egypt;2.School of Chemical Engineering,Military Technical College,Cairo,Egypt |
| |
Abstract: | Super-thermites can offer large amount of energy up to 16736 J/g. Flares based on super-thermites can offer superior thermal signature to countermeasure infrared (IR) guided missile seekers. This study reports on the sustainable fabrication of mono-dispersed Fe2O3 nanoparticles of 3 nm average particle size. Colloidal Fe2O3 nanoparticles were harvested from their synthesis medium and re-dispersed in acetone. Fluorocarbon polymers (teflon and viton) as well as aluminum metal fuel were integrated into Fe2O3/acetone colloid. The colloid mixture was granulated and mold pressed to develop the desired grain. The impact of Fe2O3 nanoparticles on thermal signature was assessed using (FT-MIR 1–6 µm) spectrometer. Flame propagation was investigated by video imaging of combustion wave. Combustion zones were quantified using image analysis. Quantification of flame temperature and main IR emitting species was performed using ICT thermodynamic code (virgin 2008). Nanocomposite flare with 12 wt% Fe2O3 offered an increase in the intensity of β band by 230% to that of reference formulation. The primary reaction zone was extended by 164%. Super-thermite particles not only offered superior spectral performance but also altered the combustion mechanism. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |