首页 | 本学科首页   官方微博 | 高级检索  
     


Modeling the effect of key cathode design parameters on the electrochemical performance of a lithium‐sulfur battery
Authors:Nisa Erisen  Nur Ber Emerce  Sevgi Can Erensoy  Damla Eroglu
Affiliation:1. Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey;2. Department of Chemical Engineering, Middle East Technical University, Ankara, TurkeyPresent Address: Damla Eroglu's, Department of Chemical Engineering, Bogazici University, Istanbul 34342, Turkey. Email:
Abstract:A 1D model is developed for the Li‐S cell to predict the effect of critical cathode design parameters—carbon‐to‐sulfur (C/S) and electrolyte‐to‐sulfur (E/S) ratios in the cathode—on the electrochemical performance. Cell voltage at 60% depth of discharge corresponding to the lower voltage plateau is used as a metric for calculating the cell performance. The cathode kinetics in the lower voltage plateau is defined with a single electrochemical reaction; thus, the model has a single apparent kinetic model parameter, the cathode exchange current density (i0,pe). The model predicts that cell voltage increases considerably with increasing carbon content until a C/S ratio of 1 is attained, whereas the enhancement in the cell voltage at higher ratios is less obvious. The model can capture the effect of the C/S ratio on the cathode kinetics by expressing the electrochemically active area in the cathode in carbon volume fraction; the C/S ratio in the cathode does not affect i0,pe in the model. On the other hand, the electrolyte amount has a significant impact on the kinetic model parameter such that increasing electrolyte amount improves the cell voltage as a result of increasing i0,pe. Therefore, in the model, i0,pe needs to be defined as a function of the electrolyte volume fraction, which is known to have a crucial effect on reaction kinetics.
Keywords:carbon‐to‐sulfur ratio in the cathode  cathode design  electrochemical modeling  electrolyte‐to‐sulfur ratio in the cathode  lithium‐sulfur battery
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号