首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of the trichothecene mycotoxin T-2 toxin on neurotransmitters and metabolites in discrete areas of the rat brain
Authors:J Wang  DW Fitzpatrick  JR Wilson
Affiliation:Department of Foods and Nutrition, University of Manitoba, Winnipeg, Canada.
Abstract:Systemic exposure to T-2 toxin disrupts brain biogenic monoamine metabolism. Although the mechanisms underlying these neurochemical perturbations are unclear, we have suggested that they are a reflection of increased blood-brain barrier (BBB) permeability, or altered protein synthesis that affects brain enzyme activities. Accordingly, BBB permeability, in vitro protein synthesis and in vitro monoamine oxidase (MAO) activity were examined in rats after either acute, or 7-day exposure to T-2. Membrane permeability was assessed from the recovery of systemically administered 14C]mannitol and 14C]dextran with 3H]water as the diffusible reference, either 2 hr post-intraperitoneal (i.p.) injections of 0, 0.2 and 1 mg T-2/kg body weight or following a 7-day exposure to diets containing 0 and 10 ppm T-2. Protein synthesis, determined by 14C]leucine incorporation, and MAO activity, determined by H2O2 production, were observed either 2 hr post-ip injection of 0 and 1 mg T-2/kg body weight or following a 7-day exposure to diets containing 0, 2.5 and 10 ppm T-2. Permeability increases were observed in all brain regions examined for mannitol, but not for dextran following T-2 i.p. The effect of dietary T-2 was more modest, affecting mannitol uptake in two brain regions, the cerebellum and pons plus medulla regions. Protein synthesis was significantly decreased by i.p. administration of T-2, while dietary treatment significantly reduced MAO enzyme activity. Collectively, the effect of T-2 toxin on BBB permeability, protein synthesis and MAO enzyme activity may account for the neurochemical imbalance observed in T-2 intoxication.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号