首页 | 本学科首页   官方微博 | 高级检索  
     

随机交叉粒子群优化算法
引用本文:王联国,洪毅. 随机交叉粒子群优化算法[J]. 计算机工程与应用, 2009, 45(16): 69-71. DOI: 10.3778/j.issn.1002-8331.2009.16.019
作者姓名:王联国  洪毅
作者单位:兰州理工大学,电气工程与信息工程学院,兰州,730030;甘肃农业大学,信息科学技术学院,兰州,730070;兰州理工大学,电气工程与信息工程学院,兰州,730030
基金项目:甘肃省教育厅科研项目 
摘    要:针对粒子群优化算法容易陷入局部极值点、进化后期收敛慢和优化精度较差等缺点,设计了一种随机交叉算子,提出了随机交叉粒子群优化算法。该算法在每次迭代中,对当前粒子和整个粒子群的最优粒子进行随机交叉,产生新的较优粒子并代替原来的粒子,从而加快了算法的收敛速度,增强了算法的寻优能力。仿真结果表明,该算法具有较高的优化性能。

关 键 词:粒子群优化  群体智能  随机交叉
收稿时间:2008-04-11
修稿时间:2008-6-16 

Stochastic crossover Particle Swarm Optimization
WANG Lian-guo,HONG Yi. Stochastic crossover Particle Swarm Optimization[J]. Computer Engineering and Applications, 2009, 45(16): 69-71. DOI: 10.3778/j.issn.1002-8331.2009.16.019
Authors:WANG Lian-guo  HONG Yi
Affiliation:1.College of Electrical and Information Engineering,Lanzhou University of Technology,Lanzhou 730030,China 2.School of Information Science and Technology,Gansu Agricultural University,Lanzhou 730070,China
Abstract:A stochastic crossover particle swarm optimization algorithm is proposed by designing a stochastic cross-operator,which aims at the disadvantages of PSO such as the easily falling into local extremum point,slow convergence.In each iteration of this algorithm,the current particles and the optimal particle of the particle swarm make a stochastic crossover,and form new particles of good quality,which will substitute the former particles,so it advances the speed of convergence of the algorithm,and enhances the ...
Keywords:Particle Swarm optimization(PSO)  swarm intelligence  stochastic crossover
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号