首页 | 本学科首页   官方微博 | 高级检索  
     


Biotransformation of N-ethyl perfluorooctanesulfonamide by rainbow trout (Onchorhynchus mykiss) liver microsomes
Authors:Tomy Gregg T  Tittlemier Sheryl A  Palace Vince P  Budakowski Wes R  Braekevelt Eric  Brinkworth Lyndon  Friesen Ken
Affiliation:Department of Fisheries and Oceans, Winnipeg, Manitoba R3T 2N6, Canada. tomyg@dfo-mpo.gc.ca
Abstract:Rainbow trout (Onchorhynchus mykiss) liver microsomes were incubated with N-ethyl perfluorooctanesulfonamide [N-EtPFOSA, C8F17SO2NH(C2H5)], to examine the possibility of in vitro biotransformation to perfluorooctane sulfonate (PFOS, C8F17SO3-) and perfluorooctanoate (PFOA, C7F15COO-). Incubations were performed by exposing trout liver microsomes to N-EtPFOSA at 8 degrees C in the dark. Reaction mixtures were analyzed after incubation periods of 0, 2, 4, 8, 16, and 30 h for N-EtPFOSA, PFOS, PFOA, and perfluorooctanesulfonamide (PFOSA, C8F17SO2NH2), a suspected intermediate. Amounts of PFOS and PFOSA were found to increase with incubation time, but only background levels of PFOA were detected. Three possible reaction pathways are proposed for the conversion of N-EtPFOSA to PFOS: (i) direct conversion of N-EtPFOSA to PFOS by deethylamination accompanied by conversion of the sulfone group to sulfonate, (ii) deethylation of N-EtPFOSA to PFOSA, followed by deamination to form PFOS, and (iii) direct hydrolysis of N-EtPFOSA. These findings represent the first report indicating a possible biotransformation of a perfluorosulfonamide to PFOS in fish and may help to explain the detection of PFOS, which is relatively involatile, and thus not likely to undergo atmospheric transport, in biota from remote regions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号