首页 | 本学科首页   官方微博 | 高级检索  
     

基于浮动车的城市道路行程时间预测算法研究
引用本文:朱国华. 基于浮动车的城市道路行程时间预测算法研究[J]. 中国市政工程, 2011, 0(2): 80-82. DOI: 10.3969/j.issn.1004-4655.2011.02.030
作者姓名:朱国华
作者单位:上海千年工程建设咨询有限公司,上海,201108;华中科技大学土木工程与力学学院,湖北,武汉,430074
基金项目:上海市科技启明星计划B类
摘    要:装载GPS的浮动车在社会交通流中比重越来越高,已成为主要的行程时间采集手段。研究了基于浮动车的城市道路路段行程时间预测算法,输入数据包括静态空间属性数据、行程时间历史备份数据和基于GPS采集的动态交通行程时间数据,并以5 min为预测间隔进行20 min短时行程时间预测。最后经2.1 km含3个交叉口的路段预测验证,表明该算法单方向单次最大误差23.0%;经过滚动预测,单方向平均绝对误差为5%~6%,精度满足用于城市道路路段的信息发布要求。

关 键 词:城市道路  道路交通流  浮动车数据  城市道路路段  行程时间预测

A Study of Travel Time Prediction Algorithm for Urban Road with Probe Vehicle
ZHU Guo-hua. A Study of Travel Time Prediction Algorithm for Urban Road with Probe Vehicle[J]. China Municipal Engineering, 2011, 0(2): 80-82. DOI: 10.3969/j.issn.1004-4655.2011.02.030
Authors:ZHU Guo-hua
Affiliation:ZHU Guo-hua1,2(1.Shanghai Qiannian Engineering Construction & Consulting Co.Ltd.,Shanghai 201108,China,2.School of Civil Engineering & Mechanics,Huazhong University of Science & Technology,Wuhan 430074,China)
Abstract:With more and more proportion of probe vehicles with GPS in traffic volume,a new travel time prediction algorithm for urban road based on probe vehicle has become the main collecting data method.The input data includes static spatial attribute data,travel time historical backup data and GPS-based dynamic traffic travel time data,the prediction interval is 5-minute intervals and rolling prediction for 20 minutes short-term travel time.By the algorithm application and evaluation of 2.1 km with three intersect...
Keywords:urban road  road traffic volume  probe vehicle data  urban road links  travel time prediction  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号