首页 | 本学科首页   官方微博 | 高级检索  
     

基于组合预测模型的小样本轴承故障分类诊断
引用本文:孙庞博,符琦,陈安华,蒋云霞. 基于组合预测模型的小样本轴承故障分类诊断[J]. 计算机工程与科学, 2021, 43(9): 1684-1691. DOI: 10.3969/j.issn.1007-130X.2021.09.020
作者姓名:孙庞博  符琦  陈安华  蒋云霞
作者单位:(湖南科技大学计算机科学与工程学院,湖南 湘潭 411201)
基金项目:国家重点研发计划(2018YFB1702602);国家自然科学基金(61402167,6177219);湖南省教育厅科技重点项目(19A174);湖南省自然科学基金(2018JJ2139)
摘    要:滚动轴承是旋转机械内常出现问题的重要部件,其故障情况复杂且难以诊断.基于小样本故障数据学习环境,针对小样本学习在提取真实特征值与目标特征值时有较大差异且泛化能力较弱的问题,提出一种采用半监督变分自编码器与LightGBM分类模型相结合的小样本学习模型LSVAE,并利用基于高斯过程的贝叶斯优化改进算法对LightGBM的...

关 键 词:滚动轴承  故障诊断  变分自编码器  半监督学习  LightGBM  小样本数据
收稿时间:2020-09-10
修稿时间:2020-12-01

Small sample bearing fault diagnosis based on combined prediction model
SUN Pang-bo,FU Qi,CHEN An-hua,JIANG Yun-xia. Small sample bearing fault diagnosis based on combined prediction model[J]. Computer Engineering & Science, 2021, 43(9): 1684-1691. DOI: 10.3969/j.issn.1007-130X.2021.09.020
Authors:SUN Pang-bo  FU Qi  CHEN An-hua  JIANG Yun-xia
Affiliation:(School of Computer Science and Engineering,Hunan University of Science and Technology,Xiangtan 411201,China)
Abstract:Rolling bearings are an important part of problems that often occur in rotating machinery. Their fault conditions are complex and difficult to diagnose. Aiming at the problem that small sample learning has a large difference between the true feature value and the target feature value and the gene- ralization ability is weak, this paper proposes a small sample learning model that combines semi-supervised variational autoencoder and LightGBM classification model. The Bayesian optimization and improvement algorithm based on Gaussian process is used to optimize the LightGBM hyperparameters, thus effectively solving the defects such as unstable performance, weak ability of extracting features, and overfitting in small sample learning. Comparative verification on the bearing experimental data set released by the Western Reserve University in the United States shows that the method has better diagnostic accuracy when facing small sample data space.
Keywords:rolling bearing  fault diagnosis;variational autoencoder;semi-supervised learning;light gradient boosting machine;small sample data  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与科学》浏览原始摘要信息
点击此处可从《计算机工程与科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号