首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进NSGA-II的车间排产优化算法研究
引用本文:周原令,胡晓兵,江代渝,李航. 基于改进NSGA-II的车间排产优化算法研究[J]. 计算机工程与应用, 2021, 57(19): 274-281. DOI: 10.3778/j.issn.1002-8331.2006-0067
作者姓名:周原令  胡晓兵  江代渝  李航
作者单位:四川大学 机械工程学院,成都 610065
摘    要:针对NSGA-II算法在处理车间排产优化问题中出现的子代种群多样性差、收敛能力差等问题,提出了一种改进NSGA-II的车间排产优化算法.改进NSGA-II算法主要对传统NSGA-II算法的交叉和变异环节,提出新的改进自适应交叉和变异算子,通过对个体拥挤度与种群平均拥挤度进行对比,并结合种群迭代进化过程,将遗传概率与种群...

关 键 词:改进NSGA-II算法  自适应交叉和变异算子  均匀进化精英保留策略  排产优化

Research on Optimization Algorithm of Workshop Scheduling Based on Improved NSGA-II
ZHOU Yuanling,HU Xiaobing,JIANG Daiyu,LI Hang. Research on Optimization Algorithm of Workshop Scheduling Based on Improved NSGA-II[J]. Computer Engineering and Applications, 2021, 57(19): 274-281. DOI: 10.3778/j.issn.1002-8331.2006-0067
Authors:ZHOU Yuanling  HU Xiaobing  JIANG Daiyu  LI Hang
Affiliation:College of Mechanical Engineering, Sichuan University, Chengdu 610065, China
Abstract:Aiming at the problems of poor population diversity and convergence ability of the progeny of NSGA-II algorithm in dealing with shop floor scheduling optimization, an improved NSGA-II algorithm is proposed. The new algorithm mainly proposes the new improved adaptive crossover and mutation operators for the crossover. It compares the individual crowding degree with the population average crowding degree, and combines with the population iterative evolution process. The genetic probability is associated with the population individual and the population evolution iteration times. So it avoids blind guidance and improves the convergence speed of the population. The new algorithm proposes the new uniform evolution elite retention strategy. Through choosing the population individuals via the adaptive hierarchy, it solves the problem of the poor diversity of the population of the offspring. Finally, it regards “maximize the minimum delivery lead time” and “minimize the maximum ideal processing time deviation” as the objective function. In the light of the problem of shop floor scheduling, it uses the improved NSGA-II algorithm to carry out the simulation analysis of the actual project. And by comparing the results of the algorithm optimization before and after the improvement, the effectiveness of the algorithm is verified. Its value parameter applied to the actual production scheduling problem examination is also proved.
Keywords:improved NSGA-II algorithm  adaptive crossover and mutation operator  uniform evolutionary elitist retention strategy  scheduling optimization  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号