首页 | 本学科首页   官方微博 | 高级检索  
     

一种融合行为与结构特征推理的造假群组检测算法
引用本文:张怡睿宸,李云峰,顾旭阳,纪淑娟. 一种融合行为与结构特征推理的造假群组检测算法[J]. 计算机工程与科学, 2021, 43(5): 926-935. DOI: 10.3969/j.issn.1007-130X.2021.05.020
作者姓名:张怡睿宸  李云峰  顾旭阳  纪淑娟
作者单位:(1.山东科技大学山东省智慧矿山信息技术重点实验室,山东 青岛 266590;2.中国银保监会衡水监管分局,河北 衡水 053000)
基金项目:国家重点R&D计划(2018YFC0831002);国家自然科学基金(71772107,61502281);教育部人文社科基金(18YJAZH136);山东省重点R&D计划(2018GGX101045);山东省自然科学基金(ZR2018BF013,ZR2018BF014);青岛市创新研究基金(18-2-2-41-jch);青岛社会科学规划研究项目(QDSKL1801138)
摘    要:在线评论对用户的购物决策有重要的影响作用,这导致一些不良商家雇佣大量水军有组织、有策略地给自己刷好评,以提高销量赚取更大利润,给竞争对手刷差评来抹黑对手,以降低其销量.为了检测这种有组织的水军群组,提出一种融合行为与结构特征推理的造假群组检测算法.该算法包含2部分:第1部分用频繁项挖掘方法产生候选群组,然后使用行为指标...

关 键 词:共谋群组  虚假检测  频繁项挖掘  行为推理  结构推理
收稿时间:2020-08-12
修稿时间:2020-11-10

A fraud group detection algorithm based on behavior and structure features reasoning
ZHANG Yi-rui-chen,LI Yun-feng,GU Xu-yang,JI Shu-juan. A fraud group detection algorithm based on behavior and structure features reasoning[J]. Computer Engineering & Science, 2021, 43(5): 926-935. DOI: 10.3969/j.issn.1007-130X.2021.05.020
Authors:ZHANG Yi-rui-chen  LI Yun-feng  GU Xu-yang  JI Shu-juan
Affiliation:(1.Shandong Provincial Key Laboratory of Wisdom Mine Information Technology,Shandong University of Science and Technology,Qingdao 266590;2.Hengshui Regulatory Branch,China Banking and Insurance Regulatory Commission,Hengshui 053000,China)
Abstract:Online reviews have an important influence on users' shopping decisions. This has resulted in that some malicious merchants hire a large number of review spammers in an organized and strategic way to promote some target products for increasing sales and earning greater profits, and to demote some target products for reducing their sales. In order to detect the organized spammer groups, this paper proposes a detection algorithm that combines behaviour and structural features reasoning. This algorithm consists of two parts. The first part uses the frequent item mining method to generate candidate groups, then uses behaviour indicators to calculate the cooperative fraud suspicion for each member of the group, and regards this suspicious degree as a priori probability. The second part first constructs a weighted reviewer-commodity bipartite graph for each group, and then uses the loopy belief propagation algorithm to infer the posterior probability. The posterior probability obtained after inference is taken as the final cooperative fraud suspicion of the member. Finally, the entropy method is used to determine whether it is a collusion group or not. Experimental results on real datasets show that the proposed algorithm has better performance than the comparison algorithm.
Keywords:collusion group  fraud detection  frequent item mining  behavior reasoning  structure reasoning  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与科学》浏览原始摘要信息
点击此处可从《计算机工程与科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号