首页 | 本学科首页   官方微博 | 高级检索  
     

考虑社会网络关系的P2P借贷项目违约风险预测
引用本文:游运,万常选,江腾蛟. 考虑社会网络关系的P2P借贷项目违约风险预测[J]. 计算机工程与应用, 2021, 57(13): 239-245. DOI: 10.3778/j.issn.1002-8331.2004-0347
作者姓名:游运  万常选  江腾蛟
作者单位:1.江西财经大学 信息管理学院,南昌 3300132.东华理工大学 理学院,南昌 3300133.江西财经大学 数据与知识工程江西省高校重点实验室,南昌 330013
摘    要:针对P2P(Peer to Peer)借贷项目违约风险预测中财务信息不完全或质量较低、预测准确率不高等问题,提出了一种考虑平台社会网络关系的P2P借贷项目违约风险预测的方法.通过对P2P借贷平台社会网络相关信息进行分析,从社会资本的结构维度、关系维度和认知维度发掘其中具有风险预测价值的关键特征,即社会网络风险特征,并将...

关 键 词:P2P借贷  社会网络  违约风险  风险预测

Project Default Risk Prediction Considering Social Network in P2P Lending
YOU Yun,WAN Changxuan,JIANG Tengjiao. Project Default Risk Prediction Considering Social Network in P2P Lending[J]. Computer Engineering and Applications, 2021, 57(13): 239-245. DOI: 10.3778/j.issn.1002-8331.2004-0347
Authors:YOU Yun  WAN Changxuan  JIANG Tengjiao
Affiliation:1.School of Information Technology, Jiangxi University of Finance and Economics, Nanchang 330013, China 2.School of Science, East China University of Technology, Nanchang 330013, China3.Jiangxi Key Laboratory of Data and Knowledge Engineering, Jiangxi University of Finance and Economics, Nanchang 330013, China
Abstract:In view of the fact that financial information is incomplete or of low quality and prediction accuracy of project default risk is low in P2P lending, the paper proposes a method to predict default risk of projects considering social network. By analyzing the social network information of P2P lending platforms, the key characteristics which have risk prediction value, namely social network risk characteristics, have been excavated according to structure dimension, relationship dimension and cognitive dimension of social capital and then take as indicator variables of default risk prediction. Two prediction models of pure financial indicators and mixed indicators with social network risk characteristics are constructed based on a variety of traditional nonlinear methods. The prediction results of prediction models are examined to analyze the value of social network risk characteristics in default risk prediction. Experimental results demonstrate that there are some characteristics significantly associated with default risk of projects in social network. These characteristics have been effectively mined and then reasonably introduced into prediction model of project default risk in P2P lending, which can help improve prediction effect of project default risk, and then provide support for investment risk avoidance of investors and risk management in P2P lending market.
Keywords:P2P lending  social network  default risk  risk prediction  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号