首页 | 本学科首页   官方微博 | 高级检索  
     

基于U-Net的对抗样本防御模型
作者姓名:赖妍菱  石峻峰  陈继鑫  白汉利  唐晓澜  邓碧颖  郑德生
作者单位:1. 西南石油大学 计算机科学学院, 成都 610500;2. 中国空气动力研究与发展中心, 四川 绵阳 621000
基金项目:四川省重大科技专项“新时代互联网+人工智能个性定制化智能教育研发与应用”(18ZDZX)。
摘    要:对抗攻击是指对图像添加微小的扰动使深度神经网络以高置信度输出错误分类。提出一种对抗样本防御模型SE-ResU-Net,基于图像语义分割网络U-Net架构,引入残差模块和挤压激励模块,通过压缩和重建方式进行特征提取和图像还原,破坏对抗样本中的扰动结构。实验结果表明,SE-ResU-Net模型能对MI-FGSM、PGD、DeepFool、C&W攻击的对抗样本实施有效防御,在CIFAR10和Fashion-MNIST数据集上的防御成功率最高达到87.0%和93.2%,且具有较好的泛化性能。

关 键 词:深度神经网络  图像分类  对抗攻击  对抗样本  防御模型  CIFAR10数据集  Fashion-MNIST数据集  
收稿时间:2021-01-12
修稿时间:2021-04-25
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程》浏览原始摘要信息
点击此处可从《计算机工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号