首页 | 本学科首页   官方微博 | 高级检索  
     

动态调整概率的双重布谷鸟搜索算法
引用本文:陈程,贺兴时,杨新社. 动态调整概率的双重布谷鸟搜索算法[J]. 计算机科学与探索, 2021, 15(5): 859-880. DOI: 10.3778/j.issn.1673-9418.2004031
作者姓名:陈程  贺兴时  杨新社
作者单位:西安工程大学 理学院,西安 710600;密德萨斯大学 科学与技术学院,英国 剑桥 CB21TN
基金项目:陕西省自然科学基础研究计划;陕西省教育厅自然科学专项;陕西省科技厅重点项目
摘    要:布谷鸟搜索算法是一种新兴的仿生智能算法,存在着求解精度低、易陷入局部最优及收敛速度慢等缺陷,提出了动态调整概率的双重布谷鸟搜索算法(DECS).首先,在自适应发现概率P中引入了种群分布熵,通过算法的所处迭代阶数和种群分布情况,动态改变发现概率P的大小,有利于平衡布谷鸟算法局部寻优和全局寻优的能力,加快收敛速度;其次,在...

关 键 词:种群分布熵  双重搜索模式  非线性对数递减的惯性权重  新型步长因子

Double Cuckoo Search Algorithm with Dynamically Adjusted Probability
CHEN Cheng,HE Xingshi,YANG Xinshe. Double Cuckoo Search Algorithm with Dynamically Adjusted Probability[J]. Journal of Frontier of Computer Science and Technology, 2021, 15(5): 859-880. DOI: 10.3778/j.issn.1673-9418.2004031
Authors:CHEN Cheng  HE Xingshi  YANG Xinshe
Affiliation:(College of Science,Xi'an Polytechnic University,Xi'an 710600,China;College of Science and Technology,Middlesex University,Cambridge CB21TN,UK)
Abstract:Cuckoo search algorithm is an emerging bionic intelligent algorithm,which has the shortages of low search precision,easy to fall into local optimum and slow convergence speed.Double cuckoo search algorithm with dynamically adjusted probability(DECS)is proposed.Firstly,the population distribution entropy is introduced into the adaptive discovery probability P,and the size of the discovery probability P is dynamically changed by the iteration order of the algorithm and the population distribution situation.It is advantageous to balance the ability of cuckoo algorithm local optimization and global optimization and accelerate the convergence speed.Secondly,in the formula for updating the path position of cuckoo's nest search,a new step-size factor update and optimization method is adopted to form a double search mode of Levy flight,which sufficiently searches the solution space.Finally,the nonlinear logarithmic decreasing inertial weight is introduced into the updated formula of stochastic preference walk,so that the algorithm can effectively overcome the shortcoming of being easily trapped into a local optimum,and improve search ability.Compared with four algorithms,simulation results of 19 test functions show that,the optimization performance of the improved cuckoo algorithm is significantly improved,the convergence speed is faster,the solution accuracy is higher,and it has stronger ability of global search and jumping out of local optimum.
Keywords:population distribution entropy  dual search mode  nonlinear logarithmic decreasing inertial weight  new step-size factor
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号