首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于深度强化学习与概率性能感知的边缘计算环境多工作流卸载方法
引用本文:马堉银,郑万波,马勇,刘航,夏云霓,郭坤银,陈鹏,刘诚武. 一种基于深度强化学习与概率性能感知的边缘计算环境多工作流卸载方法[J]. 计算机科学, 2021, 48(1): 40-48. DOI: 10.11896/jsjkx.200900195
作者姓名:马堉银  郑万波  马勇  刘航  夏云霓  郭坤银  陈鹏  刘诚武
作者单位:重庆大学计算机学院 重庆 400044;昆明理工大学理学院 昆明 650500;江西师范大学计算机信息工程学院 南昌 330022;重庆大学计算机学院 重庆 400044;重庆大学计算机学院 重庆 400044;重庆大学计算机学院 重庆 400044;西华大学计算机与软件工程学院 成都 610039;上海交通大学重庆研究院 重庆 401135
基金项目:重庆市研究生科研创新项目;江西省重点研发计划;重庆市科技局重点研发计划项目;西华大学人才引进项目;四川省科技计划项目;重庆市科技局技术创新项目
摘    要:移动边缘计算是一种新兴的分布式和泛在计算模式,其将计算密集型和时延敏感型任务转移到附近的边缘服务器,有效缓解了移动终端资源不足的问题,显著减小了用户与计算处理节点之间的通信传输开销.然而,如果多个用户同时提出计算密集型任务请求,特别是流程化的工作流任务请求,边缘计算环境往往难以有效地进行响应,并会造成任务拥塞.另外,受...

关 键 词:工作流调度  边缘计算  概率分布模型  强化学习  深度Q网络

Multi-workflow Offloading Method Based on Deep Reinforcement Learning and Probabilistic Performance-aware in Edge Computing Environment
MA Yu-yin,ZHENG Wan-bo,MA Yong,LIU Hang,XIA Yun-ni,GUO Kun-yin,CHEN Peng,LIU Cheng-wu. Multi-workflow Offloading Method Based on Deep Reinforcement Learning and Probabilistic Performance-aware in Edge Computing Environment[J]. Computer Science, 2021, 48(1): 40-48. DOI: 10.11896/jsjkx.200900195
Authors:MA Yu-yin  ZHENG Wan-bo  MA Yong  LIU Hang  XIA Yun-ni  GUO Kun-yin  CHEN Peng  LIU Cheng-wu
Affiliation:(College of Computer Science,Chongqing University,Chongqing 400044,China;Faculty of Science,Kunming University of Science and Technology,Kunming 650500,China;School of Computer Information Engineering,Jiangxi Normal University,Nanchang 330022,China;School of Computer Science and Software Engineering,Xihua University,Chengdu 610039,China;Shanghai Jiaotong University Chongqing Research Institute,Chongqing 401135,China)
Abstract:Mobile edge computing is a new distributed and ubiquitous computing model.By transferring computation-intensive and time-delay sensitive tasks to closer to the edge servers,it effectively alleviates the resource shortage of mobile terminals and the communication transmission overhead between users and computing processing nodes.However,if multiple users request computation-intensive tasks simultaneously,especially process-based workflow task requests,edge computing are often difficult to respond effectively and cause task congestion.Inaddition,the performance of edge servers is affected by detrimental factors such as task overload,power supply and real-time change of communication capability,and its performance fluctuates and changes,which brings challenges to ensure task execution and user-perceived service efficiency.To solve the above problems,a Deep-Q-Network(DQN)and probabilistic performance aware based multi-workflow scheduling approach in edge computing environment is proposed.Firstly,the historical performance data of edge cloud servers is analyzed probabilistically,then the DQN model is driven by performance probability distribution data,and iterative optimization is carried out continuously to generate multi-workflow offloading strategy.In the process of experimental verification,simulation experiments are conducted in multiple scenarios reflecting difterent levels of system load based on edge server Location data set,performance test data and multiple scientific workflow templates.The results show that the proposed method is superior to the traditional method in the execution efficiency of multi-workflow.
Keywords:Workflow scheduling  Edge computing  Probability distribution model  Reinforcement learning  Deep Q network
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号