首页 | 本学科首页   官方微博 | 高级检索  
     

社交网络用户隐私泄露量化评估方法
引用本文:谢小杰,梁英,王梓森,董祥祥. 社交网络用户隐私泄露量化评估方法[J]. 计算机工程与科学, 2021, 43(8): 1376-1386. DOI: 10.3969/j.issn.1007-130X.2021.08.006
作者姓名:谢小杰  梁英  王梓森  董祥祥
作者单位:(1.中国科学院计算技术研究所,北京 100190;2.移动计算与新型终端北京市重点实验室,北京 100190;3.中国科学院大学计算机科学与技术学院,北京 101408)
基金项目:国家重点研发计划(2018YFB1004700,2016YFB0800403)
摘    要:社交网络用户隐私泄露的量化评估有利于帮助用户了解个人隐私泄露状况,提高公众隐私保护和防范意识,同时也能为个性化隐私保护方法的设计提供依据.针对目前隐私量化评估方法主要用于评估隐私保护方法的保护效果,无法有效评估社交网络用户的隐私泄露风险的问题,提出了一种社交网络用户隐私泄露量化评估方法.基于用户隐私偏好矩阵,利用皮尔逊...

关 键 词:社交网络  隐私量化  属性识别  隐私保护
收稿时间:2020-09-05
修稿时间:2020-12-07

A quantitative evaluation method of social network users ' privacy leakage
XIE Xiao-jie,LIANG Ying,WANG Zi-sen,DONG Xiang-xiang. A quantitative evaluation method of social network users ' privacy leakage[J]. Computer Engineering & Science, 2021, 43(8): 1376-1386. DOI: 10.3969/j.issn.1007-130X.2021.08.006
Authors:XIE Xiao-jie  LIANG Ying  WANG Zi-sen  DONG Xiang-xiang
Affiliation:(1.Institute of Computing Technology,Chinese Academy of Sciences,Beijing 100190;2.Beijing Key Laboratory of Mobile Computing and New Devices,Beijing 100190;3.School of Computer Science and Technology,University of Chinese Academy of Sciences,Beijing 101408,China)
Abstract:Quantitative assessment of social network users’ privacy leakage can help users’ understand personal privacy, improve public privacy protection and prevention awareness, and also provide a basis for the design of personalized privacy protection methods. Current privacy quantitative assessment methods are mainly used to evaluate the protective effect of privacy protection methods, and are not able to effectively assess the privacy leakage risk of social network users. A quantitative evaluation method of social network users’ privacy leakage is proposed. Firstly, users’ subjective attribute sensitivity is calculated by Pearson similarity based on privacy preference matrix, and is averaged to obtain the objective attribute sensitivity. Attribute openness is calculated by the information entropy of posterior distribution which is inferenced by user sensitive attribute inference method. Transition probability and user importance is used to estimate the visible range of user data to calculate data visibility. Then, privacy score is calculated by aggregating attribute sensitivity, attribute openness, and data visibility. Finally, a fine-grained privacy evaluation is conducted based on user's privacy score, which supports dynamic evaluation of user privacy and provides a basis for personalized privacy protection. The experimental results on Sina Weibo data show that the proposed method can effectively quantify the user's privacy leakage status.
Keywords:social network  privacy quantification  attribute inference  privacy protection  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与科学》浏览原始摘要信息
点击此处可从《计算机工程与科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号