首页 | 本学科首页   官方微博 | 高级检索  
     

面向深度学习网络的细粒度商品评价分析
引用本文:康月,薛惠珍,华斌. 面向深度学习网络的细粒度商品评价分析[J]. 计算机工程与应用, 2021, 57(11): 140-147. DOI: 10.3778/j.issn.1002-8331.2007-0450
作者姓名:康月  薛惠珍  华斌
作者单位:天津财经大学 理工学院,天津 300222
摘    要:利用BERT预训练模型的优势,将句法特征与BERT词嵌入模型融入到深度学习网络中,实现细粒度的商品评价分析.提出一种基于深度学习的两阶段细粒度商品评价情感分析模型,利用融合句法特征与B E RT词嵌入的BILSTM-CRF注意力机制模型提取用户评论中的商品实体、属性与情感词;运用BILSTM模型对提取的结果进行情感分析...

关 键 词:情感分析  深度学习  BILSTM-CRF模型  BERT  注意力机制

Analysis of Fine-Grained Commodity Evaluation for Deep Learning Network
KANG Yue,XUE Huizhen,HUA Bin. Analysis of Fine-Grained Commodity Evaluation for Deep Learning Network[J]. Computer Engineering and Applications, 2021, 57(11): 140-147. DOI: 10.3778/j.issn.1002-8331.2007-0450
Authors:KANG Yue  XUE Huizhen  HUA Bin
Affiliation:School of Science and Technology, Tianjin University of Finance & Economics, Tianjin 300222, China
Abstract:Syntactic features and BERT word embedding model is integrated into the deep learning network to achieve the fine-grained commodity evaluation analysis by taking advantage of the BERT pre-training model. A two-stage fine-grained commodity evaluation sentiment analysis model based on deep learning is proposed. ?Firstly, the BILSTM-CRF attention mechanism model which combines syntactic features and BERT word embedding is used to extract commodity entities, attributes, and emotional words in user reviews. Then, the BILSTM model is applied to analyze the sentiment of the extracted results. The F1 value of feature extraction on SemEval-2016 Task 5 and COAE Task3 commodity evaluation dataset reaches 88.2%, which is 4.8 percentage points and 2.3 percentage points higher than that of the BILSTM model and BILSTM-CRF model, respectively. The accuracy of sentiment classification is up to 88.5%, which is 8 percentage points higher than ordinary RNN, and 15 percentage points higher than traditional machine learning methods, such as support vector machine and naive Bayes. To corroborate the deep learning model which integrates syntactic features and BERT word embedding is superior in the sentiment analysis of fine-grained commodity evaluation by analyzing the complexity of the model.
Keywords:sentiment analysis  deep learning  BILSTM-CRF model  BERT  attention mechanism  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号