首页 | 本学科首页   官方微博 | 高级检索  
     

深度卷积神经网络在心音分类方法中的应用
引用本文:陈伟,孙强,齐月月,徐晨. 深度卷积神经网络在心音分类方法中的应用[J]. 计算机工程与应用, 2021, 57(16): 182-189. DOI: 10.3778/j.issn.1002-8331.2005-0037
作者姓名:陈伟  孙强  齐月月  徐晨
作者单位:1.南通大学 医学院(护理学院),江苏 南通 2260012.南通大学 信息科学技术学院,江苏 南通 226019
摘    要:通过分析心音信号对心脏早期的病理状态进行确诊具有重要的意义.提出了一种基于深度卷积神经网络的心音分类方法.将心音信号转化成具有时频特性的梅尔频谱系数(Mel Frequency Spectral Coefficient,MFSC)特征图,将其作为深度卷积神经网络模型的输入;利用深度卷积神经网络对MFSC特征图进行训练,...

关 键 词:心音分类  深度卷积神经网络(DCNN)  数据扩充

Deep Convolutional Neural Networks for Heart Sound Classification
CHEN Wei,SUN Qiang,QI Yueyue,XU Chen. Deep Convolutional Neural Networks for Heart Sound Classification[J]. Computer Engineering and Applications, 2021, 57(16): 182-189. DOI: 10.3778/j.issn.1002-8331.2005-0037
Authors:CHEN Wei  SUN Qiang  QI Yueyue  XU Chen
Affiliation:1.Medical School, Nantong University, Nantong, Jiangsu 226001, China2.School of Information Science and Technology, Nantong University, Nantong, Jiangsu 226019, China
Abstract:It is of great significance to diagnose the early pathological state of the heart by analyzing the heart sound signals. This paper presents a heart sound classification method based on Deep Convolutional Neural Network(DCNN). Firstly, the heart sound signal is transformed into Mel feature maps with time-frequency characteristics, which are used as the input of the DCNN model. Then, the DCNN model is used to train the Mel feature maps, and the center loss function is introduced to establish the optimal deep learning model. In the testing stage, the heart sound signal is first converted into several two-dimensional Mel feature maps. Then, the feature maps are classified by the pre-trained deep learning model. Finally, the classification of heart sound signal is judged by the principle of majority voting. Due to the limited number of labeled samples, the accuracy of model is not high. In this paper, two-dimensional Mel feature maps of heart sound are randomly shielded in time domain and frequency domain in order to augment the training datasets. The experimental results show that the performance of this method is better than the state-of-the-art methods in the PASCAL heart sound datasets, which aims to classify normal, murmur and extrasystole heart sounds in the test samples.
Keywords:heart sound classification  Deep Convolutional Neural Network(DCNN)  data augment  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号