首页 | 本学科首页   官方微博 | 高级检索  
     

机器学习中自适应k值的k均值算法改进
引用本文:钟志峰,李明辉,张艳. 机器学习中自适应k值的k均值算法改进[J]. 计算机工程与设计, 2021, 42(1): 136-141. DOI: 10.16208/j.issn1000-7024.2021.01.020
作者姓名:钟志峰  李明辉  张艳
作者单位:湖北大学计算机与信息工程学院,湖北武汉430062;湖北大学计算机与信息工程学院,湖北武汉430062;湖北大学计算机与信息工程学院,湖北武汉430062
摘    要:针对k-means算法对于远离群点敏感和k值难以确定等缺陷,在分析已有的k-means改进算法的基础上,引进肘部法则的思想对数据进行优化处理并且根据自适应思想结合误差平方和SSE(sum of squared error),提出一种自适应调整k值的k-means改进算法。选取机器学习库中的真实数据集进行仿真实验,其结果表明,改进后的k-means算法中的剔除远离群点和自适应调整k值的方法均可行,准确性高、聚类效果质量更优。

关 键 词:k-means算法  自适应  肘部法则  误差平方和  机器学习

Improved k-means clustering algorithm for adaptive k value in machine learning
ZHONG Zhi-feng,LI Ming-hui,ZHANG Yan. Improved k-means clustering algorithm for adaptive k value in machine learning[J]. Computer Engineering and Design, 2021, 42(1): 136-141. DOI: 10.16208/j.issn1000-7024.2021.01.020
Authors:ZHONG Zhi-feng  LI Ming-hui  ZHANG Yan
Affiliation:(College of Computer and Information Engineering,Hubei University,Wuhan 430062,China)
Abstract:To solve the problems such as the sensitivity of k-means clustering algorithm to outlier and the difficulty in determining k value,on the basis of analyzing the existing k-means improved algorithm,the idea of elbow method was introduced to optimize the data and SSE(sum of squared error)according to the adaptive idea,and an adaptive adjustment of k value of k-means algorithm was put forward.Real data sets in machine learning library were selected for several simulation experiments.The results show that the improved k-means clustering algorithm is feasible to eliminate remote group points and self-adaptively adjust the k value,with high accuracy and better clustering effects.
Keywords:k-means clustering algorithm  self-adaptive  elbow method  SSE  machine learning
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号