首页 | 本学科首页   官方微博 | 高级检索  
     

基于ATT-DGRU的文本方面级别情感分析
引用本文:尹久,池凯凯,宦若虹. 基于ATT-DGRU的文本方面级别情感分析[J]. 计算机科学, 2021, 48(5): 217-224. DOI: 10.11896/jsjkx.200500076
作者姓名:尹久  池凯凯  宦若虹
作者单位:浙江工业大学计算机科学与技术学院 杭州 310023
基金项目:国家自然科学基金(61872322)。
摘    要:方面级别情感分类是针对给定文本、分析其在给定方面所表达出的情感极性.现有的主流解决方案中,基于注意力机制的循环神经网络模型忽略了关键词邻近上下文信息的重要性,而结合卷积神经网络(Convolutional Neural Network,CNN)的多层模型不擅长捕捉句子级别的长距离依赖信息.因此,提出了一种基于截断循环神...

关 键 词:方面情感分析  深度学习  截断循环神经网络

Aspect-level Sentiment Analysis of Text Based on ATT-DGRU
YIN Jiu,CHI Kai-kai,HUAN Ruo-hong. Aspect-level Sentiment Analysis of Text Based on ATT-DGRU[J]. Computer Science, 2021, 48(5): 217-224. DOI: 10.11896/jsjkx.200500076
Authors:YIN Jiu  CHI Kai-kai  HUAN Ruo-hong
Affiliation:(School of Computer Science and Technology,Zhejiang University of Technology,Hangzhou 310023,China)
Abstract:Aspect-level sentiment classification is to analyze the sentiment polarity in a given aspect for a given text.In the exis-ting mainstream solutions,the attention mechanism-based cyclic neural network model ignores the importance of keyword pro-ximity context information,and the CNN multilayer model is not good at capturing sentence-level long-distance dependency information.This paper proposes an aspect-level emotion classification network model based on disconnected gated recurrent units(DGRU)and attention mechanism,which is abbreviated as ATT-DGRU.The DGRU network used in this model integrates the advantages of circular neural network and CNN.It can not only capture the long-distance dependent semantic information of text,but also extract the semantic information of key phrases.Attention mechanism is used to capture the importance of each word to a specific aspect when deducing the sentiment polarity of a specific aspect,meanwhile generates an emotional weight vector,which can be visualized.Accuracies of two-class and three-class of ATT-DGRU model constructed in this paper can reach 91.11%and 87.76%respectively in ACSA task on Chinese hotel review datasets.Accuracies of two-class and three class of ATT-DGRU model can reach 77.21%and 90.06%respectively in ATSA task on SemEval2014-Restaurant dataset.
Keywords:Aspect-level sentiment classification  Deep learning  Disconnected gated recurrent unit
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号