首页 | 本学科首页   官方微博 | 高级检索  
     

超宽带雷达人体姿态识别综述
引用本文:李俊侠,张秦,郑桂妹. 超宽带雷达人体姿态识别综述[J]. 计算机工程与应用, 2021, 57(3): 14-23. DOI: 10.3778/j.issn.1002-8331.2009-0444
作者姓名:李俊侠  张秦  郑桂妹
作者单位:1.空军工程大学 研究生院,西安 710051 2.空军工程大学 防空反导学院,西安 710051
基金项目:陕西省青年托举人才项目;国家自然科学基金面上项目;陕西省自然科学基金面上项目
摘    要:与传统摄像头相比,利用超宽带雷达进行人体姿态识别不仅对环境要求低、识别率高且能较好地解决摄像头存在视角盲区和易泄露隐私等问题.结合超宽带雷达系统的特性,对常见的超宽带脉冲信号进行了分析;针对当前的研究前沿,对超宽带雷达人体姿态识别的传统机器学习方法和深度学习方法进行分析,结合具体文献对具有代表性的支持向量机(SVM)和...

关 键 词:超宽带雷达  人体姿态识别  深度学习  支持向量机  卷积神经网络

Overview of Human Posture Recognition by Ultra-wideband Radar
LI Junxia,ZHANG Qin,ZHENG Guimei. Overview of Human Posture Recognition by Ultra-wideband Radar[J]. Computer Engineering and Applications, 2021, 57(3): 14-23. DOI: 10.3778/j.issn.1002-8331.2009-0444
Authors:LI Junxia  ZHANG Qin  ZHENG Guimei
Affiliation:1.Postgraduate School, Air Force Engineering University, Xi’an 710051, China2.Air and Missile Defense College, Air Force Engineering University, Xi’an 710051, China
Abstract:Compared with the traditional camera, the use of Ultra-Wideband(UWB) radar for human posture recognition is not only low environmental requirements, high recognition rate and can better solve the problems of blind spots and easy to leak privacy in the camera. Combined with the characteristics of the UWB radar system, the common ultra-wideband pulse signals are analyzed in detail. According to the current research frontier, the traditional machine learning methods and deep learning methods of human posture recognition by UWB radar are analyzed, and the principle and each model’s limitation of the representative Support Vector Machine(SVM)and Convolutional Neural Networks(CNN) are analyzed and discussed in combination with the specific literature. The general model of UWB radar human posture recognition is proposed, the problems that need to be solved urgently in human posture recognition by UWB radar are analyzed and its future development direction is prospected.
Keywords:Ultra-Wideband(UWB) radar  human posture recognition  deep learning  Support Vector Machine(SVM)  Convolutional Neural Networks(CNN)  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号