首页 | 本学科首页   官方微博 | 高级检索  
     

基于视觉的无人机板载自主实时精确着陆系统
引用本文:饶颖露,邢金昊,张恒,马晓静,马思乐. 基于视觉的无人机板载自主实时精确着陆系统[J]. 计算机工程, 2021, 47(10): 290-297. DOI: 10.19678/j.issn.1000-3428.0059404
作者姓名:饶颖露  邢金昊  张恒  马晓静  马思乐
作者单位:山东大学 海洋研究院,山东 青岛 266237
基金项目:国家重点研发计划(2017YFB0404201)。
摘    要:传统视觉方案无法应对无人机降落过程中复杂的环境变化,难以实现在机载处理器上的实时图像处理.为此,提出一种适用于无人机板载端轻量高效的Onboard-YOLO算法,使用可分离卷积代替常规卷积核提升计算速度,通过注意力机制自动学习通道特征权重提高模型准确度.在运动模糊、遮挡、目标出视野、光照、尺度变化等5种干扰环境下进行降...

关 键 词:无人机  精准降落  深度学习  目标检测  注意力机制
收稿时间:2020-08-31
修稿时间:2020-10-09

Vision-Based Autonomous Real-Time Precise Landing System for UAV-borne Processors
RAO Yinlu,XING Jinhao,ZHANG Heng,MA Xiaojing,MA Sile. Vision-Based Autonomous Real-Time Precise Landing System for UAV-borne Processors[J]. Computer Engineering, 2021, 47(10): 290-297. DOI: 10.19678/j.issn.1000-3428.0059404
Authors:RAO Yinlu  XING Jinhao  ZHANG Heng  MA Xiaojing  MA Sile
Affiliation:Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
Abstract:Traditional vision-based landing schemes cannot cope with the complicated environmental changes during landing of Unmanned Aerial Vehicles(UAV), and thus fail to process images in real time using UAV-borne processors.To address the problem, a lightweight and efficient Onboard-YOLO algorithm is proposed for UAV-borne processors.The algorithm employs separable convolution instead of conventional convolution kernels to improve the calculation speed.Then the attention mechanism is used for the automatic learning of channel feature weights to improve the accuracy of the model.The landing algorithm is tested in various cases of interference, including motion blur, occlusion, target going beyond the visual field, illumination and scale changes.The test results show that compared with the advanced real-time detection algorithms, the proposed Onboard-YOLO algorithm can deal with the complicated environmental changes better during landing.Its calculation speed reaches 18.3 frames per second on the airborne processor, which is 4.3 times faster than that of the original YOLO algorithm, and 25.7 times faster than that of Faster-RCNN.Additionally, the accuracy of the algorithm reaches 0.91, which is 8.9 percentage points higher than that of Mobilenet-SSD.Onboard-YOLO enables autonomous real-time precise landing based on the airborne processor, bringing the success rate of landing to 95%.
Keywords:Unmanned Aerial Vehicles(UAV)  precise landing  deep learning  target detection  attention mechanism  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程》浏览原始摘要信息
点击此处可从《计算机工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号