首页 | 本学科首页   官方微博 | 高级检索  
     

带标记音节的双向维汉神经机器翻译方法
引用本文:艾山·吾买尔,斯拉吉艾合麦提·如则麦麦提,西热艾力·海热拉,刘文其,吐尔根·依布拉音,汪烈军,瓦依提·阿不力孜. 带标记音节的双向维汉神经机器翻译方法[J]. 计算机工程与应用, 2021, 57(4): 161-168. DOI: 10.3778/j.issn.1002-8331.1912-0118
作者姓名:艾山·吾买尔  斯拉吉艾合麦提·如则麦麦提  西热艾力·海热拉  刘文其  吐尔根·依布拉音  汪烈军  瓦依提·阿不力孜
作者单位:1.新疆大学 信息科学与工程学院,乌鲁木齐 8300462.新疆大学 新疆多语种信息技术实验室,乌鲁木齐 8300463.新疆大学 软件学院,乌鲁木齐 830091
基金项目:国家语委项目;新疆多语种信息技术实验室开放课题;国家自然科学基金
摘    要:近年来,基于神经网络的机器翻译成为机器翻译领域的主流方法,但是在低资源翻译领域中仍存在平行语料不足和数据稀疏的挑战.针对维-汉平行语料不足和维吾尔语形态复杂所导致的数据稀疏问题,从维吾尔语的音节特点出发,将单词切分成音节,同时融入BME(Begin,Middle,End)标记思想,提出一种基于带标记音节的神经网络机器翻...

关 键 词:神经机器翻译  数据稀疏  音节粒度  维汉神经机器翻译

Bi-directional Uyghur-Chinese Neural Machine Translation with Marked Syllables
Hasan Wumaier,Sirajahmat Ruzmamat,Xireaili Hairela,LIU Wenqi,Tuergen Yibulayin,WANG Liejun,Wayit Abulizi. Bi-directional Uyghur-Chinese Neural Machine Translation with Marked Syllables[J]. Computer Engineering and Applications, 2021, 57(4): 161-168. DOI: 10.3778/j.issn.1002-8331.1912-0118
Authors:Hasan Wumaier  Sirajahmat Ruzmamat  Xireaili Hairela  LIU Wenqi  Tuergen Yibulayin  WANG Liejun  Wayit Abulizi
Affiliation:1.College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China2.Xinjiang Laboratory of Multi-language Information Technology, Xinjiang University, Urumqi 830046, China3.School of Software, Xinjiang University, Urumqi 830091, China
Abstract:In recent years, neural networks have become the mainstream methods used in machine translation, but in the field of low-resource machine translation, parallel corpus shortage and data sparseness remain great challenges. Aiming at the problem of data sparseness caused by insufficient Uyghur-Chinese parallel corpus and complex Uyghur morphology, this paper proposes a neural network method, which is based on the syllable characteristics of Uyghur language, cutting words into syllables, and incorporating the idea of BME(Begin, Middle, End) markup. Compared to the word level and the BPE level, the proposed method improves 7.39 and 3.04 BLEU values respectively in Uyghur-Chinese machine translation tasks, and 5.82 and 3.09 BLEU values respectively in Chinese-Uyghur machine translation. It indicates that under the condition of insufficient parallel corpus, this method can effectively improve the quality of Uyghur-Chinese machine translation.
Keywords:neural machine translation  sparse data  syllable level  Uyghur-Chinese neural machine translation  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号