首页 | 本学科首页   官方微博 | 高级检索  
     

基于GM(1,1)和D-MECM的钟差预报方法
引用本文:程佳慧,缪新育,赵婧妍,乔耀军,喻松. 基于GM(1,1)和D-MECM的钟差预报方法[J]. 北京邮电大学学报, 2022, 45(2): 44-49. DOI: 10.13190/j.jbupt.2021-149
作者姓名:程佳慧  缪新育  赵婧妍  乔耀军  喻松
作者单位:1. 北京邮电大学 信息与通信工程学院, 北京 100876;2. 北京邮电大学 电子工程学院, 北京 100876
摘    要:针对单一钟差预报模型在建模数据量较少时中长期预报精度不足的问题,提出了基于灰色模型和一阶差分修正指数曲线法的组合预报模型。首先基于少量数据建立灰色模型并预测未来一段时间的钟差数据,再将其作为一阶差分修正指数曲线模型的建模数据,进行钟差的中长期预报。仿真结果表明,组合预报模型能够基于少量历史数据对钟差进行高精度的中长期预报。采用卫星共视仪采集的精密钟差数据进行实验,并与单一二次多项式模型和灰色模型进行对比,结果显示:使用5h的钟差数据进行建模并预报未来48h钟差数据时,二次多项式模型和灰色模型的平均预报精度分别为285.06ns和91.11ns,而组合模型的平均预报精度可达29.48ns,相比于单一二次多项式模型和灰色模型,分别提高了89.66%和67.64%。

关 键 词:卫星钟差预报  灰色模型  组合模型  
收稿时间:2021-07-22

Satellite Clock Bias Prediction Based on GM(1,1) and D-MECM
CHENG Jiahui,MIAO Xinyu,ZHAO Jingyan,QIAO Yaojun,YU Song. Satellite Clock Bias Prediction Based on GM(1,1) and D-MECM[J]. Journal of Beijing University of Posts and Telecommunications, 2022, 45(2): 44-49. DOI: 10.13190/j.jbupt.2021-149
Authors:CHENG Jiahui  MIAO Xinyu  ZHAO Jingyan  QIAO Yaojun  YU Song
Affiliation:1. School of Information and Communications Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China;2. School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract:To improve the accuracy in medium-term and long-term prediction of a single satellite clock bias prediction model when the amount of modeling data is small, a combined prediction model based on grey model and first-order difference modified exponential curve method is proposed. In the model, a small amount of historical clock data is used to build a grey model and predict the clock data in the future, and then the prediction data is used as the modeling data of the first order difference modified exponential curve model to make the medium-term and long-term prediction of the clock. The simulation results show that the combined prediction model can forecast the clock difference with high accuracy based on a small amount of historical data. The experiment is carried out based on the precise clock difference data collected by the satellite common view instrument. Compared with the single quadratic polynomial model and the gray model, the results show that when using 5h clock difference data for modeling and forecasting 48h clock difference data in the future, the average prediction accuracy of quadratic polynomial model and gray model is 285.06ns and 91.11ns, respectively, while the average prediction accuracy of combined model is 29.48ns. Thus, compared with the single quadratic polynomial model and gray model, the proposed combined prediction model achieves 89.66% and 67.64% accuracies gains, respectively.
Keywords:satellite clock bias prediction  grey model  composite model  
本文献已被 万方数据 等数据库收录!
点击此处可从《北京邮电大学学报》浏览原始摘要信息
点击此处可从《北京邮电大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号