首页 | 本学科首页   官方微博 | 高级检索  
     

基于注意力机制与局部关联特征的行人重识别北大核心CSCD
引用本文:张晓涵. 基于注意力机制与局部关联特征的行人重识别北大核心CSCD[J]. 光电子.激光, 2022, 0(9): 984-991
作者姓名:张晓涵
作者单位:(中国石油大学(华东) 计算机科学与技术学院,山东 青岛 266580)
摘    要:由于行人在真实场景下易受到背景、遮挡、姿态等问题的影响,为获取行人图像中更具辨别能力的特征,提出一种基于注意力机制和局部关联特征的行人重识别方法。首先,在网络框架中嵌入注意力模块以关注图像中表达能力强的特征;然后,利用图像中相邻区域的关联得到局部关联特征,并结合全局特征。本文方法在Market1501和DukeMTMC-ReID数据集上进行实验,Rank-1指标分别达到了95.3%和90.1%。结果证明,本文方法能充分获取判别力强的特征信息,使模型具有较强的识别能力。

关 键 词:行人重识别  注意力机制  局部关联特征  多粒度
收稿时间:2021-12-24
修稿时间:2021-01-28

Person re-identification based on attention mechanism and local association feature
ZHANG Xiaohan. Person re-identification based on attention mechanism and local association feature[J]. Journal of Optoelectronics·laser, 2022, 0(9): 984-991
Authors:ZHANG Xiaohan
Affiliation:College of Computer Science and Technology,China University of PetroleumEast China,Qingdao,Shandong 266580, China
Abstract:Because pedestrians are easily affected by background,occlusion,postu re and other issues in real scenes,in order to obtain more discriminative features in pedestrian ima ges,a person re-identification method based on attention mechanism and local association fea ture is proposed. Firstly,the attention module is embedded in the network framework to pay attent ion to the features with strong expressive ability in the image.Then,the local association features are obtained by using the association of adjacent parts in the image,and combined with the global feat ures.The experiments on Market1501 and DukeMTMC-ReID datasets show that the Rank-1 inde x reaches 95.3%and 90.1%,respectively.The results show that the proposed method can full y obtain the feature information with strong discrimination and make the model have strong re cognition ability.
Keywords:person re-identification   attention mechanism   local association fea ture   multi-granularity
本文献已被 维普 等数据库收录!
点击此处可从《光电子.激光》浏览原始摘要信息
点击此处可从《光电子.激光》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号