The anti-gonadotropic effects of cytokines: the role of neuropeptides |
| |
Authors: | PS Kalra TG Edwards B Xu M Jain SP Kalra |
| |
Affiliation: | Department of Physiology, University of Florida, College of Medicine, Gainesville 32610, USA. |
| |
Abstract: | The inhibitory effect of inflammation and endotoxins on the secretion of reproductive hormones from the hypothalamo-pituitary axis is well documented. A comparison of the luteinizing hormone (LH) suppressing effects of several pro-inflammatory cytokines revealed that centrally administered IL-1 beta was the most potent inhibitor of pituitary LH secretion; interleukin (IL)-1 alpha and tumor necrosis factor (TNF) alpha were relatively less effective, whereas IL-6 was ineffective. This order of potency suggested that the anti-gonadotropic effects of an immune challenge are most likely attributable to the action of centrally released IL-1 beta, and this was supported by the demonstration that IL-1 beta suppressed hypothalamic luteinizing hormone releasing hormone (LHRH) release. We used a multifaceted approach to identify the afferent signals in the brain that convey immune messages to hypothalamic LHRH neurons. Pharmacological studies with specific antagonists of opioid receptor subtypes demonstrated that activation of the mu 1 receptor subtype was required to transmit the cytokine signal. Furthermore, icv IL-1 beta upregulated hypothalamic POMC mRNA and increased the concentration and release of beta-endorphin, the primary ligand of mu 1 receptors. We have obtained evidence that IL-1 beta also enhanced the gene expression and concentration of tachykinins, a family of nociceptive neuropeptides in the hypothalamus. Blockade of tachykinergic NK2 receptors attenuated IL-1 beta induced inhibition of LH secretion. Collectively, these results demonstrate that IL-1 beta, generated centrally in response to inflammation, upregulates the opioid and tachykinin peptides in the hypothalamus. These two groups of neuropeptides are critically involved in relaying the cytokine signal to neuroendocrine neurons and causing the suppression of hypothalamic LHRH and pituitary LH release. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|