首页 | 本学科首页   官方微博 | 高级检索  
     

基于DBN模型的遥感图像分类
引用本文:吕启, 窦勇, 牛新, 徐佳庆, 夏飞. 基于DBN模型的遥感图像分类[J]. 计算机研究与发展, 2014, 51(9): 1911-1918. DOI: 10.7544/issn1000-1239.2014.20140199
作者姓名:吕启  窦勇  牛新  徐佳庆  夏飞
作者单位:1.1(国防科学技术大学计算机学院并行与分布处理国防科技重点实验室 长沙 410073);2.2(海军工程大学电子工程学院 武汉 430033) (lvqi@nudt.edu.cn)
摘    要:遥感图像分类是地理信息系统(geographic information system, GIS)的关键技术,对城市规划与管理起到十分重要的作用.近年来,深度学习成为机器学习领域的一个新兴研究方向.深度学习采用模拟人脑多层结构的方式,对数据从低层到高层渐进地进行特征提取,从而发掘数据在时间与空间上的规律,进而提高分类的准确性.深度信念网络(deep belief network, DBN)是一种得到广泛研究与应用的深度学习模型,它结合了无监督学习和有监督学习的优点,对高维数据具有较好的分类能力.提出一种基于DBN模型的遥感图像分类方法,并利用RADARSAT-2卫星6d的极化合成孔径雷达(synthetic aperture radar, SAR)图像进行了验证.实验表明,与支持向量机(SVM)及传统的神经网络(NN)方法相比,基于DBN模型的方法可以取得更好的分类效果.

关 键 词:遥感图像  合成孔径雷达  地物分类  深度学习  受限玻尔兹曼机  深度信念网络

Remote Sensing Image Classification Based on DBN Model
Lü Qi, Dou Yong, Niu Xin, Xu Jiaqing, Xia Fei. Remote Sensing Image Classification Based on DBN Model[J]. Journal of Computer Research and Development, 2014, 51(9): 1911-1918. DOI: 10.7544/issn1000-1239.2014.20140199
Authors:Lü Qi  Dou Yong  Niu Xin  Xu Jiaqing  Xia Fei
Affiliation:1.1(National Laboratory for Parallel and Distributed Processing, School of Computer, National University of Defense Technology, Changsha 410073);2.2(Electronic Engineering College, Naval University of Engineering, Wuhan 430033)
Abstract:Remote sensing image classification is one of the key technologies in geographic information system (GIS), and it plays an important role in modern urban planning and management. In the field of machine learning, deep learning is springing up in recent years. By mimicking the hierarchical structure of human brain, deep learning can extract features from lower level to higher level gradually, and distill the spatio-temporal regularizes of input data, thus improve the classification performance. Deep belief network (DBN) is a widely investigated and deployed deep learning model. It combines the advantages of unsupervised and supervised learning, and can archive good classification performance for high-dimensional data. In this paper, a remote sensing image classification method based on DBN model is proposed. This is one of the first attempts to apply deep learning approach to urban detailed classification. Six-day high-resolution RADARSAT-2 polarimetric synthetic aperture radar (SAR) data were used for evaluation. Experimental results show that the proposed method can outperform SVM (support vector machine) and traditional neural network (NN).
Keywords:remote sensing image  synthetic aperture radar(SAR)  land cover classification  deep learning  restricted Boltzmann machine (RBM)  deep belief network (DBN)
本文献已被 CNKI 等数据库收录!
点击此处可从《计算机研究与发展》浏览原始摘要信息
点击此处可从《计算机研究与发展》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号