首页 | 本学科首页   官方微博 | 高级检索  
     

基于双粒子群协同优化的ECT图像重建算法
引用本文:赵玉磊, 郭宝龙, 吴宪祥, 王湃. 基于双粒子群协同优化的ECT图像重建算法[J]. 计算机研究与发展, 2014, 51(9): 2094-2100. DOI: 10.7544/issn1000-1239.2014.20131006
作者姓名:赵玉磊  郭宝龙  吴宪祥  王湃
作者单位:1.1(西安电子科技大学空间科学与技术学院 西安 710071);2.2(西安科技大学电气工程与控制学院 西安 710054) (zhaoyulei_2008@aliyun.com)
基金项目:国家自然科学基金项目,中央高校基本科研业务费专项资金项目
摘    要:由于电容层析成像(electrical capacitance tomography, ECT)系统中电容传感器的敏感场是“软场”,然而传统的图像重建算法是在忽略“软场”效应的条件下构建的,因此在提高成像精度上存在瓶颈.针对该问题,在分析敏感场分布,并讨论“软场”效应及其对图像重建产生的影响的基础上,提出一种基于双粒子群协同优化的图像重建算法.该算法通过引入用于构造粒子群优化适应度函数的先验条件,消除了因忽略“软场”效应而产生的影响,并通过最小二乘支持向量机得到不同流型下的先验条件.同时,该算法通过借鉴Lotka-Volerrra双群协同竞争模型,提出一种双群协同竞争方案,通过群内与群间的学习竞争提高粒子多样性,从而提高粒子群的全局收敛能力和收敛速度.实验结果表明,该算法不仅成像精度高、易收敛,而且具有抵抗测量信号中噪声干扰的特点.

关 键 词:电容层析成像  图像重建  粒子群优化  Lotka-Vloterra模型  先验条件

Image Reconstruction Algorithm for ECT Based on Dual Particle Swarm Collaborative Optimization
Zhao Yulei, Guo Baolong, Wu Xianxiang, Wang Pai. Image Reconstruction Algorithm for ECT Based on Dual Particle Swarm Collaborative Optimization[J]. Journal of Computer Research and Development, 2014, 51(9): 2094-2100. DOI: 10.7544/issn1000-1239.2014.20131006
Authors:Zhao Yulei  Guo Baolong  Wu Xianxiang  Wang Pai
Affiliation:1.1(School of Aerospace Science & Technology, Xidian University, Xi'an 710071);2.2(School of Electric and Control, Xi'an University of Science & Technology, Xi'an 710054)
Abstract:Since the sensitivity field in the capacitance sensor of electrical capacitance tomography system is “soft field”, and the “soft field” nature is ignored by the traditional image reconstruction algorithms, there is bottleneck in improving the imaging accuracy for the algorithms. To solve the problem, based on the analysis of the distribution of sensitivity field and the discussion of the “soft field” effect and its impact on the image reconstruction, a novel image reconstruction algorithm is proposed, which is dual particle swarm collaborative optimization. In the algorithm, to eliminate the impact generated by ignoring the “soft field” nature, a priori condition is used to construct the fitness function of particle swarm optimization. The priori conditions under the different flow patterns are obtained by the least square support vector machine. Meanwhile, by introducing the Lotka-Volterra model, a new cooperative-competitive scheme is discussed. The diversity of particles is increased by intraspecific and interspecific learning and competition. So the algorithm improves the global convergence and convergence rate. The experimental results illustrate that this algorithm not only has higher image precision and stronger convergence, but also is resistant to the interference of noise in the measurement signal.
Keywords:electrical capacitance tomography  image reconstruction  particle swarm optimization  Lotka-Vloterra model  priori conditions
本文献已被 CNKI 等数据库收录!
点击此处可从《计算机研究与发展》浏览原始摘要信息
点击此处可从《计算机研究与发展》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号