首页 | 本学科首页   官方微博 | 高级检索  
     

基于ICPSO-XGBoost的非侵入式负荷辨识方法
作者姓名:谢耀锋  周洪  周东国
作者单位:武汉大学电气与自动化学院,武汉430072
摘    要:针对家庭用电负荷的电气特征相近导致基于电气量特征的非侵入式负荷辨识方法易产生误辨识的问题,文中提出以电器投切时间、运行时长和投切次数为代表的电器使用规律特征,并结合传统电气负荷特征组合成为新的负荷特征标签。在此基础上,提出一种基于改进混沌粒子群优化的极端梯度提升树算法。在该算法中,首先利用回归树作为负荷特征的基分类器构建极端梯度提升树模型。进一步地,通过在目标函数中加入正则项,添加缩减系数等措施避免算法陷入过拟合。同时,将混沌思想应用于粒子群算法中提升其全局寻优能力,并得到基于改进混沌粒子群优化后的极端梯度提升树算法模型。最后,在AMPds公用数据集上进行测试,通过对比分析测试结果,验证了文中所提出的负荷特征标签和负荷辨识算法对提升非侵入式负荷辨识的有效性。

关 键 词:非侵入式  电器使用规律  XGBoost  粒子群算法
收稿时间:2020-05-19
修稿时间:2020-05-19
本文献已被 万方数据 等数据库收录!
点击此处可从《电测与仪表》浏览原始摘要信息
点击此处可从《电测与仪表》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号